• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Wei, XIANG Jun-Sen, JIN Wen-Tao, SUN Pei-Jie, SU Gang. Discovery of a spin supersolid and its giant magnetocaloric effect for extreme cooling[J]. PHYSICS, 2025, 54(3): 183-188. DOI: 10.7693/wl20250309
Citation: LI Wei, XIANG Jun-Sen, JIN Wen-Tao, SUN Pei-Jie, SU Gang. Discovery of a spin supersolid and its giant magnetocaloric effect for extreme cooling[J]. PHYSICS, 2025, 54(3): 183-188. DOI: 10.7693/wl20250309

Discovery of a spin supersolid and its giant magnetocaloric effect for extreme cooling

More Information
  • Received Date: January 07, 2025
  • Available Online: March 14, 2025
  • Published Date: March 14, 2025
  • The extremely low-temperature refrigeration technology that can achieve a temperature below 1 K and provide stable cooling capacity is not only a frontier scientific topic but also a key expertise supporting the development of many fields. Recently, we have, for the first time, discovered a novel quantum state that combines the properties of both solids and superfluids, namely the spin supersolid, in the cobalt-based triangular lattice quantum magnetic material Na2BaCo(PO4)2. Further studies show that this quantum state can lead to a giant magnetocaloric effect. Through the adiabatic demagnetization process, a low temperature of 94 mK has been successfully achieved, marking a breakthrough in low-temperature solid-state refrigeration without helium-3, and opening up a new pathway for extreme cooling using quantum materials. After a brief introduction to the supersolidity, this paper will elaborate on discovery of the spin supersolid and its giant magnetocaloric effect in a cobalt-based triangular lattice quantum material, as well as the realization of extremely-low temperature refrigeration. In combination with the recent progress on the topological excitation magnetocaloric effect found in Kitaev quantum spin liquids, this paper also looks ahead to the future prospects of solid-state refrigeration using quantum materials.
  • [1]
    Andreev A F,Lifshitz l M. Sov. Phys. JETP,1969,29(6):1107
    [2]
    Leggett A J. Phys. Rev. Lett.,1970,25:1543
    [3]
    Kim E,Chan M H W. Nature,2004,427:225
    [4]
    Boninsegni M,Prokof’ev N. Phys. Rev. Lett.,2005,95:237204
    [5]
    Wessel S,Troyer M. Phys. Rev. Lett.,2005,95:127205
    [6]
    Heidarian D,Damle K. Phys. Rev. Lett.,2005,95:127206
    [7]
    Melko R G et al. Phys. Rev. Lett.,2005,95:127207
    [8]
    Yang C N. Rev. Mod. Phys.,1962,34:694
    [9]
    Gao Y et al. npj Quantum Mater.,2022,7:89
    [10]
    Zhong R,Guo S,Xu G et al. Proc. Natl. Acad. Sci. USA,2019, 116:14505
    [11]
    Sheng J et al. Proc. Natl. Acad. Sci. USA ,2022,119: e2211193119
    [12]
    Xiang J et al. Nature,2024,625:270
    [13]
    Gao Y et al. Phys. Rev. B,2024,110:214408
    [14]
    Sheng J et al. The Innovation,2025,6(4):100769
    [15]
    Chi R et al. Phys. Rev. B,2024,110:L180404
    [16]
    Zhu M et al. Phys. Rev. Lett.,2024,133:186704
    [17]
    Chen T et al. 2024,arXiv:2402.15869
    [18]
    Mila F. From RVB to supersolidity: the saga of the IsingHeisenberg model on the triangular lattice. DOI:10.36471/JCCM_June_2024_03
    [19]
    Li H et al. Nature Commun.,2024,15:7011
    [20]
    Giauque W F,MacDougall D P. Phys. Rev.,1933,43:768
  • Related Articles

    [1]CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
    [2]CHEN Zhuo-Yu, HUANG Hao-Liang. High-temperature superconducting thin films and the mechanism of superconductivity[J]. PHYSICS, 2024, 53(8): 541-550. DOI: 10.7693/wl20240806
    [3]WANG Meng. Discovery of high-Tc superconductivity in a nickelate[J]. PHYSICS, 2023, 52(10): 663-671. DOI: 10.7693/wl20231001
    [4]RUAN Wei, WANG Ya-Yu. Electronic orders in cuprate high temperature superconductors[J]. PHYSICS, 2017, 46(8): 521-527. DOI: 10.7693/wl20170804
    [5]GAO Miao, LU Zhong-Yi, XIANG Tao. Finding high-temperature superconductors by metallizing the σ-bonding electrons[J]. PHYSICS, 2015, 44(07): 421-426. DOI: 10.7693/wl20150701
    [6]High-Tc superconductivity research in the University of Science and Technology of China[J]. PHYSICS, 2008, 37(08): 568-572.
    [7]Spin excitations in the optimally electron-doped superconductor Nd1.85Ce0.15CuO4-δ[J]. PHYSICS, 2007, 36(11): 817-819.
    [8]Angle-resolved photoemission studies of cuprate high temperature superconductors[J]. PHYSICS, 2006, 35(10): 818-828.
    [9]Pseudogap and superconducting phase fluctuations in high-Tc superconductors[J]. PHYSICS, 2006, 35(05): 432-437.
    [10]The electronic structure of high-Tc superconductors, anti-ferromagnetic exchange and the magnetic superconducting mechanism[J]. PHYSICS, 2003, 32(10).
  • Cited by

    Periodical cited type(2)

    1. 李泽众,洪文山,谢涛,刘畅,罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报. 2025(01): 219-233 .
    2. 王猛. 液氮温区镍氧化物高温超导体的发现. 物理. 2023(10): 663-671 . 本站查看

    Other cited types(40)

Catalog

    Article views (213) PDF downloads (1453) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return