• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004
Citation: CHANG Jia-Xin, ZHANG Sheng-Nan, LIU Ji-Xing. Preparation and development of practical high-temperature superconducting materials[J]. PHYSICS, 2024, 53(10): 691-700. DOI: 10.7693/wl20241004

Preparation and development of practical high-temperature superconducting materials

More Information
  • Received Date: June 04, 2024
  • Published Date: October 14, 2024
  • Superconducting materials exhibit zero-resistance, the Meissner effect, and quantum tunneling. Therefore, they are of profound practical significance and have immense developmental prospects in diverse domains such as electric power, health care, transportation, quantum computing, industry, national defense and scientific experimentation. Since the discovery of superconductivity in 1911, its theory, as well as the synthesis and application of superconducting materials, have seen significant progress. In recent years, with the steady improvement of preparation techniques, experimental research on high-temperature superconductivity has progressed to a stage of enhanced performance with potential breakthrough applications. This paper will briefly review the development and physical characteristics and classification of superconducting materials, then describe recent progress in the research on several significant practical high-temperature materials, including their lattice structures, characteristics, fabrication, and applications. Further enhancement of their performance for future applications will also be discussed.
  • [1]
    张平祥, 闫果, 冯建情等. 中国工程科学, 2023, 25(1):8
    [2]
    罗会仟. 物理, 2016, 45(04):269
    [3]
    罗会仟. 物理, 2016, 45(05):339
    [4]
    You Q J, Nori F. Nature, 2011, 474(7353):589
    [5]
    冯端等. 金属物理学(第四卷:超导电性和磁性). 北京:科学出版社, 2021. p.159
    [6]
    罗会仟. 物理, 2016, 45(06):408
    [7]
    Lilia B, Hennig R, Hirschfeld P et al. J. Phys.:Condens. Matter, 2022, 34:183002
    [8]
    Bondarenko S I, Koverya V P, Krevsun A V et al. Low Temp. Phys., 2017, 43(10):1125
    [9]
    Senatore C, Alessandrini M, Lucarelli A et al. Supercond. Sci. Technol., 2014, 27(10):103001
    [10]
    蔡传兵, 刘志勇, 鲁玉明. 中国材料进展, 2011, 30(03):1
    [11]
    蔡传兵, 潘成远, 刘志勇等. 物理学进展, 2007, 27(04):467
    [12]
    郑贝贝, 邵玲. 材料导报, 2019, 33(S1):318
    [13]
    Miao H, Marken K R, Meinesz M et al. IEEE Trans. Appl. Supercond., 2005, 15:2554
    [14]
    金利华, 李成山, 郝清滨. 物理, 2020, 49(11):755
    [15]
    Jiang J Y, Bradford G, Hossain S I et al. IEEE Trans. Appl. Supercond., 2019, 29(5):6400405
    [16]
    Sato K I, Kobayashi S I, Nakashima T. Jpn. J. Appl. Phys., 2012, 51:010006
    [17]
    Awaji S, Watanabe K, Oguro H et al. Supercond. Sci. Technol., 2017, 30(6):065001
    [18]
    蔡传兵, 池长鑫, 李敏娟等. 科学通报, 2019, 64(08):827
    [19]
    Shi Y, Liu H, Liu F et al. Physica C:Supercond., 2018, 550:10
    [20]
    蔡传兵, 杨召, 郭艳群. 物理, 2020, 49(11):747
    [21]
    Uglietti D. Supercond. Sci. Technol., 2019, 32(5):053001
    [22]
    Wu Y, Wu H F, Zhao Y et al. Mater. Today Nano, 2023, 24:2588
    [23]
    Obradors X, Puig T. Supercond. Sci. Technol., 2014, 27(4):044003
    [24]
    Shiohara Y, Taneda T, Yoshizumi M. Jpn. J. Appl. Phys., 2012, 51:010007
    [25]
    Lee C, Son H, Won Y et al. Supercond. Sci. Technol., 2020, 33(4):044006
    [26]
    Seungyong H, Kwanglok K, Kwangmin K et al. Nature, 2019, 570(7762):496
    [27]
    Nagamatsu J, Nakagawa N, Muranaka T et al. Nature, 2001, 410(6824):63
    [28]
    闻海虎. 材料研究学报, 2015, 29(04):241
    [29]
    刘浩然, 杨芳, 王庆阳等. 稀有金属材料与工程, 2018, 47(03):1020
    [30]
    周廉, 甘子钊. 中国高温超导材料及应用发展战略研究:中国工程院咨询项目. 北京:化学工业出版社, 2008
    [31]
    Giunchi G, Ceresara S, Ripamonti G. Supercond. Sci. Technol., 2003, 16(2):285
    [32]
    Hiroaki K, Jahmahn H, Kazumasa T et al. IEEE Trans. Appl. Supercond., 2011, 21(3):2643
    [33]
    Wang Z K, Yang F, Wang Q Y et al. Supercond. Sci. Technol., 2024, 37:085017
    [34]
    Tomsic M, Rindfleisch M, Yue J et al. Physica C, 2007, 456(1-2):203
    [35]
    Kamihara Y, Watanabe T, Hirano M et al. J. Am. Chem. Soc, 2008, 30(11):3296
    [36]
    丁兆君. 科学, 2020, 72(01):29
    [37]
    徐中堂, 马衍伟. 稀有金属, 2017, 41(05):553
    [38]
    Chen X H, Dai P C, Feng D L et al. National Science Review, 2014, 1(3):371
    [39]
    马衍伟. 物理学进展, 2017, 37(1):12
    [40]
    Si W D, Han S J, Shi X Y et al. Nat. Commun., 2013, 4:1347
  • Related Articles

    [1]ZHENG Yuan-Lin, CHEN Xian-Feng. Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era[J]. PHYSICS, 2024, 53(1): 22-32. DOI: 10.7693/wl20240103
    [2]LIU Chao, ZHOU Zong-Quan, LI Chuan-Feng. Crystal-based waveguide quantum memories[J]. PHYSICS, 2023, 52(8): 552-559. DOI: 10.7693/wl20230804
    [3]TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802
    [4]LIU Yao-Dong, LI Zhi-Hua, YU Jin-Zhong. New waveguide material Si3N4 for photonic integration[J]. PHYSICS, 2019, 48(2): 82-87. DOI: 10.7693/wl20190202
    [5]Tamela Maciel. Bending X rays on a chip[J]. PHYSICS, 2016, 45(1): 41-41.
    [6]LI Chun-Fei. Silicon-based nanowaveguide microcavity all-optical switches——a research breakthrough[J]. PHYSICS, 2015, 44(12): 803-809. DOI: 10.7693/wl20151203
    [7]WU Xiao-Qin, WANG Yi-Pei, TONG Li-Min. Optical microfibers and their applications[J]. PHYSICS, 2015, 44(06): 356-365. DOI: 10.7693/wl20150602
    [8]Properties and applications of silicon waveguide slow-light devices[J]. PHYSICS, 2010, 39(04): 267-272.
    [9]ALL-opical logic gates based on micro-nanometer semiconductor waveguides[J]. PHYSICS, 2010, 39(02): 130-135.
    [10]THE LATEST PROGRESS OF OPTICAL WAVEGUIDE SWITCH[J]. PHYSICS, 2003, 32(03).
  • Cited by

    Periodical cited type(5)

    1. 郑远林,陈险峰. 薄膜铌酸锂集成非线性光学:走向全光信息时代的新路径. 物理. 2024(01): 22-32 . 本站查看
    2. 卢金龙,郝婷,李志浩,周赤,吉贵军,王兴龙. 薄膜铌酸锂片上倒装激光芯片的结构设计与优化. 光学学报. 2023(23): 310-317 .
    3. 刘宏,桑元华,孙德辉,王东周,王继扬. 信息时代的铌酸锂晶体:进展与展望. 人工晶体学报. 2021(04): 708-715 .
    4. 高博锋,任梦昕,郑大怀,兀伟,蔡卫,孙军,孔勇发,许京军. 铌酸锂的耄耋之路:历史与若干进展. 人工晶体学报. 2021(07): 1183-1199 .
    5. 肖靖,常双聚,赵莉,朱亚彬,陈云琳. 高掺锌/镁铌酸锂薄膜的光电性质. 人工晶体学报. 2021(09): 1648-1654 .

    Other cited types(3)

Catalog

    Article views (353) PDF downloads (1421) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return