• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802
Citation: TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802

Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges

More Information
  • Received Date: July 14, 2023
  • Available Online: August 30, 2023
  • Lithium niobate has a wide light transparency range, high nonlinear-optic, electro-optic, acousto-optic and thermo-optic coefficients, as well as stable chemical properties, which makes it an ideal substrate material for photonic integration. In the field of quantum optics, a series of lithium niobate based integrated devices have been developed, which can enable the highly efficient generation, manipulation, frequency conversion, quantum storage and integrated single-photon detection of photon states, and has the potential for fully integrated photon frequency manipulation, deterministic multi-photon state generation and photon-photon interaction. This may push forward the development of fully functional integrated quantum optical circuits, which will further promote fundamental quantum physics studies and practical applications of quantum information technology. This paper will review the progress of lithium niobate based quantum integration, and its future opportunities and challenges.
  • [1]
    Wang J,Sciarrino F,Laing A et al. Nat. Photon.,2020,14:273
    [2]
    Moody G,Sorger V J,Blumenthal D J et al. J. Phys. Photonics, 2022,4:012501
    [3]
    Sun J,Hao Y,Zhang L et al. J. Synth. Cryst.,2020,49:947
    [4]
    Gao B,Ren M,Zheng D et al. J. Synth. Cryst.,2021,50:1183
    [5]
    Zhu S N,Zhu Y Y,Ming N B. Science,1997,278:843
    [6]
    Bazzan M,Sada C. Appl. Phys. Rev.,2015,2:040603
    [7]
    Jia Y,Wang L,Chen F. Appl. Phys. Rev.,2021,8:011307
    [8]
    Boes A,Chang L,Langrock C et al. Science,2023,379:eabj4396
    [9]
    Hu Y,Yu M,Zhu D et al. Nature,2021,599:587
    [10]
    Wang X,Jiao X,Wang B et al. npj Quantum Inf.,2023,9:1
    [11]
    Zhang M,Wang C,Kharel P et al. Optica,2021,8:652
    [12]
    Cai L,Mahmoud A,Khan M et al. Photon. Res.,2019,7:1003
    [13]
    Yang Y,Lu R,Gao L et al. J. Microelectromech. S.,2019,28:575
    [14]
    Gong Z,Liu X,Xu Y et al. Optica,2020,7:1275
    [15]
    https://seas.harvard.edu/news/2017/12/now-entering-lithium-niobate-valley
    [16]
    Saravi S,Pertsch T,Setzpfandt F. Adv. Opt. Mater.,2021,9:2100789
    [17]
    Xie Z,Zhu S. Adv. Photon.,2022,4:030502
    [18]
    Xu P,Zhu S N. AIP Advances,2012,2:041401
    [19]
    Tanzilli S,Tittel W,Halder M et al. Nature,2005,437:116
    [20]
    Yu X Q,Xu P,Xie Z D et al. Phys. Rev. Lett.,2008,101:233601
    [21]
    Nasr M B,Carrasco S,Saleh B E A et al. Phys. Rev. Lett.,2008, 100:183601
    [22]
    Leng H Y,Yu X Q,Gong Y X et al. Nat. Commun.,2011,2:1
    [23]
    Jin H,Xu P,Luo X W et al. Phys. Rev. Lett.,2013,111:023603
    [24]
    Tanzilli S,Riedmatten H D,Tittel W et al. Electronics Letters, 2001,37:26
    [25]
    Jin H,Liu F M,Xu P et al. Phys. Rev. Lett.,2014,113:103601
    [26]
    Sun C W,Wu S H,Duan J C et al. Opt. Lett.,2019,44:5598
    [27]
    Sansoni L,Luo K H,Eigner C et al. npj Quantum Inf.,2017.,3:5
    [28]
    Xue G T,Niu Y F,Liu X et al. Phys. Rev. Appl.,2021,15:064059
    [29]
    Gong Y X,Xie Z D,Xu P et al. Phys. Rev. A,2011,84:053825
    [30]
    Luo K H,Ansari V,Massaro M et al. Opt. Express,2020,28:3215
    [31]
    Luo K H,Herrmann H,Krapick S et al. New J. Phys.,2015,17:073039
    [32]
    Ma Z,Chen J Y,Li Z et al. Phys. Rev. Lett.,2020,125:263602
    [33]
    Bonneau D,Lobino M,Jiang P et al. Phys. Rev. Lett.,2012,108:053601
    [34]
    Luo K H,Brauner S,Eigner C et al. Sci. Adv.,2019,5:eaat1451
    [35]
    Sund P I,Lomonte E,Paesani S et al. Sci. Adv.,2023,9:eadg7268
    [36]
    Lu H H,Lukens J M,Peters N A et al. Phys. Rev. Lett.,2018, 120:030502
    [37]
    Lu H H,Lukens J M,Williams B P et al. npj Quantum Inf.,2019, 5:24
    [38]
    Ma L,Slattery O,Tang X. Phys. Rep.,2012,521:69
    [39]
    Vandevender A P,Kwiat P G. J. Mod. Optic.,2004,51:1433
    [40]
    Albota M A,Wong F N C. Opt. Lett.,2004,29:1449
    [41]
    Roussev R V,Langrock C,Kurz J R et al. Opt. Lett.,2004,29:1518
    [42]
    Pelc J S,Ma L,Phillips C R et al. Opt. Express,2011,19:21445
    [43]
    Liao S K,Yong H L,Liu C et al. Nat. Photon.,2017,11:509
    [44]
    Van Leent T,Bock M,Garthoff R et al. Phys. Rev. Lett.,2020, 124:010510
    [45]
    Yu Y,Ma F,Luo X Y et al. Nature,2020,578:240
    [46]
    Zhu S. Chin. Phys. Lett.,2020,37:080102
    [47]
    Gao R,Yao N,Guan J et al. Chin. Opt. Lett.,2022,20:011902
    [48]
    Ekici C,Yu Y,Adcock J C et al. 2023,arXiv:2301.04140
    [49]
    Staudt M U,Hastings-Simon S R,Nilsson M et al. Phys. Rev. Lett.,2007,98:113601
    [50]
    Dutta S,Goldschmidt E A,Barik S et al. Nano Lett.,2020,20:741
    [51]
    Dutta S,Zhao Y,Saha U et al. ACS Photonics,2023,10:1104
    [52]
    Shams-Ansari A,Renaud D,Cheng R et al. Optica,2022,9:408
    [53]
    Zhang X et al. Appl. Phys. Lett.,2023,122:081103
    [54]
    Wang M et al. Jpn. J. Appl. Phys.,2023,62:SC0801
    [55]
    Li M,Chang L,Wu L et al. Nat. Commun.,2022,13:5344
    [56]
    Sayem A A et al. Appl. Phys. Lett.,2020,116:151102
    [57]
    Lomonte E et al. Nat. Commun.,2021,12:6847
    [58]
    Höpker J P et al. J. Phys. Photonics,2021,3:034022
    [59]
    Sharapova P R et al. New J. Phys.,2017,19:123009
    [60]
    Liu H Y et al. Adv. Photon. Nexus,2023,2:016003
  • Related Articles

    [1]ZHENG Yuan-Lin, CHEN Xian-Feng. Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era[J]. PHYSICS, 2024, 53(1): 22-32. DOI: 10.7693/wl20240103
    [2]HUANG Hai-Qi, WANG Yu-Fei, HU Xiao-Yong. Smart photonic chips based on novel physical phenomena[J]. PHYSICS, 2024, 53(1): 12-21. DOI: 10.7693/wl20240102
    [3]LI Meng, LI Chu, LI Yan. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. PHYSICS, 2023, 52(8): 542-551. DOI: 10.7693/wl20230803
    [4]QIANG Xiao-Gang, HUANG Jie, WANG Yang, SONG Hai-Jing. Integrated silicon quantum photonics[J]. PHYSICS, 2023, 52(8): 524-533. DOI: 10.7693/wl20230801
    [5]LI Lin, CHENG Ya, ZHU Shi-Ning. Metasurface-based quantum optics[J]. PHYSICS, 2021, 50(5): 308-316. DOI: 10.7693/wl20210504
    [6]YAN Bo. Quantum simulation based on ultracold atoms in a lattice[J]. PHYSICS, 2021, 50(1): 31-36. DOI: 10.7693/wl20210105
    [7]CHENG Ya. Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry[J]. PHYSICS, 2020, 49(5): 277-284. DOI: 10.7693/wl20200501
    [8]SHENG Chong, LIU Hui, ZHU Shi-Ning. Analogical gravitation on photonic chips[J]. PHYSICS, 2019, 48(7): 409-416. DOI: 10.7693/wl20190701
    [9]Photonic crystal integrated optical devices[J]. PHYSICS, 2008, 37(09): 658-665.
    [10]Integrated atom optics: atom chips[J]. PHYSICS, 2003, 32(06).
  • Cited by

    Periodical cited type(5)

    1. 郑远林,陈险峰. 薄膜铌酸锂集成非线性光学:走向全光信息时代的新路径. 物理. 2024(01): 22-32 . 本站查看
    2. 谢汉荣,杨铁锋,韦玉明,关贺元,卢惠辉. 薄膜铌酸锂光电探测器近期研究进展. 人工晶体学报. 2024(03): 410-425 .
    3. 林锦添,高仁宏,管江林,黎春桃,姚妮,程亚. 低损耗薄膜铌酸锂光集成器件的研究进展. 人工晶体学报. 2024(03): 372-394 .
    4. 郝永鑫,秦娟,孙军,杨金凤,李清连,黄贵军,许京军. 坩埚底角形状对提拉法生长同成分铌酸锂晶体的影响. 无机材料学报. 2024(10): 1167-1174 .
    5. 仝珍珠,何云东,管佳豪,薛少杰,薄方,齐新元. 基于阿基米德螺旋线超晶格结构的宽带倍频器研究. 现代应用物理. 2024(06): 60-66 .

    Other cited types(3)

Catalog

    Article views (777) PDF downloads (1622) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return