• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHENG Ya. Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry[J]. PHYSICS, 2020, 49(5): 277-284. DOI: 10.7693/wl20200501
Citation: CHENG Ya. Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry[J]. PHYSICS, 2020, 49(5): 277-284. DOI: 10.7693/wl20200501

Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry

More Information
  • Received Date: March 29, 2020
  • Published Date: May 11, 2020
  • The emerging applications enabled by disruptive technologies such as big data, artificial intelligence, and quantum information require unprecedented information processing capacities. Photonic integrated circuit (PIC) technology provides promising potential for realizing information processing devices and/or systems with higher speed, higher efficiency, and lower cost. In particular, the rapid development of PIC platforms based on lithium niobate on insulator (LNOI), a photonic material compatible with lithographic fabrication techniques, has significantly promoted device performance. Here we will introduce the latest breakthroughs in this area. Based on the technological advances, an industry chain built upon LNOI is beginning to take shape.
  • Related Articles

    [1]ZHENG Yuan-Lin, CHEN Xian-Feng. Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era[J]. PHYSICS, 2024, 53(1): 22-32. DOI: 10.7693/wl20240103
    [2]LIU Chao, ZHOU Zong-Quan, LI Chuan-Feng. Crystal-based waveguide quantum memories[J]. PHYSICS, 2023, 52(8): 552-559. DOI: 10.7693/wl20230804
    [3]TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802
    [4]LIU Yao-Dong, LI Zhi-Hua, YU Jin-Zhong. New waveguide material Si3N4 for photonic integration[J]. PHYSICS, 2019, 48(2): 82-87. DOI: 10.7693/wl20190202
    [5]Tamela Maciel. Bending X rays on a chip[J]. PHYSICS, 2016, 45(1): 41-41.
    [6]LI Chun-Fei. Silicon-based nanowaveguide microcavity all-optical switches——a research breakthrough[J]. PHYSICS, 2015, 44(12): 803-809. DOI: 10.7693/wl20151203
    [7]WU Xiao-Qin, WANG Yi-Pei, TONG Li-Min. Optical microfibers and their applications[J]. PHYSICS, 2015, 44(06): 356-365. DOI: 10.7693/wl20150602
    [8]Properties and applications of silicon waveguide slow-light devices[J]. PHYSICS, 2010, 39(04): 267-272.
    [9]ALL-opical logic gates based on micro-nanometer semiconductor waveguides[J]. PHYSICS, 2010, 39(02): 130-135.
    [10]THE LATEST PROGRESS OF OPTICAL WAVEGUIDE SWITCH[J]. PHYSICS, 2003, 32(03).
  • Cited by

    Periodical cited type(5)

    1. 郑远林,陈险峰. 薄膜铌酸锂集成非线性光学:走向全光信息时代的新路径. 物理. 2024(01): 22-32 . 本站查看
    2. 卢金龙,郝婷,李志浩,周赤,吉贵军,王兴龙. 薄膜铌酸锂片上倒装激光芯片的结构设计与优化. 光学学报. 2023(23): 310-317 .
    3. 刘宏,桑元华,孙德辉,王东周,王继扬. 信息时代的铌酸锂晶体:进展与展望. 人工晶体学报. 2021(04): 708-715 .
    4. 高博锋,任梦昕,郑大怀,兀伟,蔡卫,孙军,孔勇发,许京军. 铌酸锂的耄耋之路:历史与若干进展. 人工晶体学报. 2021(07): 1183-1199 .
    5. 肖靖,常双聚,赵莉,朱亚彬,陈云琳. 高掺锌/镁铌酸锂薄膜的光电性质. 人工晶体学报. 2021(09): 1648-1654 .

    Other cited types(3)

Catalog

    Article views (381) PDF downloads (1855) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return