• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Meng. Discovery of high-Tc superconductivity in a nickelate[J]. PHYSICS, 2023, 52(10): 663-671. DOI: 10.7693/wl20231001
Citation: WANG Meng. Discovery of high-Tc superconductivity in a nickelate[J]. PHYSICS, 2023, 52(10): 663-671. DOI: 10.7693/wl20231001

Discovery of high-Tc superconductivity in a nickelate

More Information
  • Received Date: October 10, 2023
  • Available Online: October 20, 2023
  • Exploration of unconventional superconductors and elucidation of their mechanism have been important frontiers in condensed matter physics for more than 40 years. Heavy fermi superconductors, copper oxide high-Tc superconductors, and iron-based superconductors are three large families of unconventional superconductors. Cuprates are the only family that hosts high superconducting transition temperatures above the boiling point of nitrogen at ambient pressure. Nickel oxides with Ni+ are expected to show unconventional superconductivity due to the similarity of the electronic configurations of Cu2+ and Ni+. Recently, we discovered superconductivity under 14 GPa at 80 K in a bilayer nickelate La3Ni2O7 with an average valent state of Ni2.5+. In this paper, we will describe the verification of superconductivity by electronic and magnetic measurements, as well as the determination of the crystal structure of La3Ni2O7 under pressure. The obvious difference of the magnetic ground state of La3Ni2O7 from that of copper oxide and iron-based superconductors may be vital for elucidating the mechanism of unconventional superconductivity.
  • [1]
    Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 108:1175
    [2]
    单鹏飞, 王宁宁, 孙建平等. 物理, 2021, 50:217
    [3]
    Ying J et al. Phys. Rev. Lett., 2023, 130:256002
    [4]
    He X et al. Chin. Phys. Lett., 2023, 40:107403
    [5]
    焦琳. 物理, 2020, 49:586
    [6]
    Keimer B, Kivelson S A, Norman M R et al. Nature, 2015, 518:179
    [7]
    Hosono H et al. Sci. Technol. Adv. Mater., 2015, 16:033503
    [8]
    Ortiz B R et al. Phys. Rev. Mater., 2021, 5:034801
    [9]
    Wu W et al. Nat. Commun., 2014, 5:5508
    [10]
    Cai W et al. Phys. Rev. B, 2020, 102:144525
    [11]
    Bao J K et al. Phys. Rev. B, 2015, 91:180404
    [12]
    Cheng J G et al. Phys. Rev. Lett., 2015, 114:117001
    [13]
    Foo M L et al. Phys. Rev. Lett., 2004, 92:247001
    [14]
    Tegel M, Bichler D, Johrendt D. Solid State Sci., 2008, 10:193
    [15]
    Neilson J R et al. Phys. Rev. B, 2012, 86:054512
    [16]
    Sarrao J L et al. Nature, 2002, 420:297
    [17]
    Bendnorz J G, Muller K A. Z. Phys. B-Condensed Matter, 1986, 64:189
    [18]
    Wu M K et al. Phys. Rev. Lett., 1987, 58:908
    [19]
    Schilling A, Cantoni M, Guo J D et al. Nature, 1993, 363:56
    [20]
    Gao L et al. Phys. Rev. B, 1994, 50:4260
    [21]
    Ca H, Cu O. Europhys. Lett., 2005, 72:458
    [22]
    Kamihara Y et al. J. Am. Chem. Soc., 2006, 128:10012
    [23]
    Kamihara Y, Watanabe T, Hirano M et al. J. Am. Chem. Soc., 2008, 130:3296
    [24]
    Chen X H et al. Nature, 2008, 453:761
    [25]
    Stewart G R. Rev. Mod. Phys., 2011, 83:1589
    [26]
    Chen C et al. Nat. Phys., 2020, 16:536
    [27]
    Scalapino D J. Rev. Mod. Phys., 2012, 84:1383
    [28]
    Dai P. Rev. Mod. Phys., 2015, 87:855
    [29]
    Wang M et al. Nat. Commun., 2013, 4:2874
    [30]
    向涛, 薛健. 物理, 2017, 46:514
    [31]
    Wold B A, Banks E. J. Am. Chem. Soc., 1957, 79:4911
    [32]
    李庆, 闻海虎. 物理, 2022, 51:633
    [33]
    Zhang J, Tao X. Cryst. Eng. Comm., 2021, 23:3249
    [34]
    Rice T M. Phys. Rev. B, 1999, 59:7901
    [35]
    Li D et al. Nature, 2019, 572:624
    [36]
    李丹枫. 中国科学:物理学力学天文学, 2021, 51:047405
    [37]
    Zhang Q H, Zhu Z H, Uwatoko Y et al. Nat. Commun., 2022, 13:4367
    [38]
    Ding X et al. Nature, 2023, 615:50
    [39]
    Pan G A et al. Nat. Mater., 2022, 21:160
    [40]
    Zhou X et al. Adv. Mater., 2022, 34:2106117
    [41]
    Lu H et al. Science, 2021, 373:213
    [42]
    Brisi C, Vallino M, Abbattista F. J. Less-Common Met., 1981, 79:215
    [43]
    Drennan J, Tavares C P, Steele B C H. Phys. Today, 1982, 35:111
    [44]
    Ram R A M, Ganapathi L, Ganguly P et al. J. Solid State Chem., 1986, 63:139
    [45]
    Carvalho M D et al. J. Mater. Chem., 1997, 7:2107
    [46]
    Zhang Z, Greenblatt M, Goodenough J B. Journal of Solid State Chemistry, 1994, 108:402
    [47]
    Taniguchi S et al. J. Phys. Soc. Japan, 1995, 64:1644
    [48]
    Wu G,Neumeier J J,Hundley M F. Phys. Rev. B,2001,63:245120
    [49]
    Poltavets V V, Lokshin K A, Egami T et al. Mater. Res. Bull., 2006, 41:955
    [50]
    Ling C D,Argyriou D N,Wu G et al. J. Solid State Chem., 1999, 152:517
    [51]
    Toubi Y, Essehli R, Dušek M et al. J. Phys. Chem. Solids, 2001, 62:195
    [52]
    Hosoya T et al. J. Phys. Conf. Ser., 2008, 121:052013
    [53]
    Liu Z et al. Sci. China Physics, Mech. Astron., 2023, 66:217411
    [54]
    Zhang J et al. Phys. Rev. Mater., 2020, 4:83402
    [55]
    Sun H et al. Nature, 2023, 621:493
    [56]
    Takahashi H et al. Nat. Mater., 2015, 14:1008
    [57]
    Pardo V, Pickett W E. Phys. Rev. B, 2011, 83:245128
    [58]
    高淼, 卢仲毅, 向涛. 物理, 2015, 44:421
  • Related Articles

    [1]ZHENG Yuan-Lin, CHEN Xian-Feng. Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era[J]. PHYSICS, 2024, 53(1): 22-32. DOI: 10.7693/wl20240103
    [2]LI Meng, LI Chu, LI Yan. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. PHYSICS, 2023, 52(8): 542-551. DOI: 10.7693/wl20230803
    [3]TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802
    [4]QIANG Xiao-Gang, HUANG Jie, WANG Yang, SONG Hai-Jing. Integrated silicon quantum photonics[J]. PHYSICS, 2023, 52(8): 524-533. DOI: 10.7693/wl20230801
    [5]CHENG Ya. Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry[J]. PHYSICS, 2020, 49(5): 277-284. DOI: 10.7693/wl20200501
    [6]LI Xian-Yao, YU Yu-De, YU Jin-Zhong. Thermo-optic, electro-optic, and all-optical switches and arrays[J]. PHYSICS, 2013, 42(04): 272-279. DOI: 10.7693/wl20130405
    [7]Novel photonic sensor engine for discrimination and detection of weeds and crops[J]. PHYSICS, 2010, 39(10): 699-712.
    [8]Photonic crystal integrated optical devices[J]. PHYSICS, 2008, 37(09): 658-665.
    [9]Comparison between electronic and photonic systems[J]. PHYSICS, 2002, 31(09).
    [10]Characteristics of the decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. PHYSICS, 2002, 31(08).

Catalog

    Article views (932) PDF downloads (1802) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return