• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Liu, WU Meng-Hao. Sliding ferroelectricity: theory, experiment, and potential applications[J]. PHYSICS, 2024, 53(11): 741-750. DOI: 10.7693/wl20241102
Citation: YANG Liu, WU Meng-Hao. Sliding ferroelectricity: theory, experiment, and potential applications[J]. PHYSICS, 2024, 53(11): 741-750. DOI: 10.7693/wl20241102

Sliding ferroelectricity: theory, experiment, and potential applications

More Information
  • Received Date: September 29, 2024
  • Published Date: November 14, 2024
  • In recent years, two-dimensional (2D) ferroelectrics have stimulated remarkable interest. Notably, the recently proposed concept of sliding ferroelectricity suggests that for most 2D materials, vertical polarization can be induced through interlayer stacking in their bilayers and multilayers, which are switchable upon interlayer sliding driven by a vertical electric field. Such sliding ferroelectricity has been extensively verified experimentally in a series of van der Waals systems. This paper will provide a concise review of the latest theoretical and experimental developments in sliding ferroelectrics, as well as their potential applications. The unique sliding mechanism significantly reduces the switching barrier while ensuring thermal stability, and also enables high-speed, low energy cost, and fatigue-resistant data writing, all of which have been confirmed experimentally. The coupling of sliding ferroelectricity with intrinsic physical properties of 2D monolayers (magnetism, excitonics, superconductivity, valleytronics, nontrivial topology, phonon chirality, etc.), allows for non-volatile electrical control of those properties. The related physics, like Moiré ferroelectricity, metallic ferroelectricity, and the ferroelectric nonlinear anomalous Hall effect, have greatly enriched ferroelectric physics, providing a broad platform for exploring novel physical phenomena and developing new electronic devices. Currently, large-scale growth of sliding ferroelectric single crystals has been achieved experimentally. The superior performance of transistors, neuromorphic memristors, optoelectronics, and other devices based on sliding ferroelectrics has been verified. The unoptimized flipping speed and fatigue resistance are already comparable to the best performance of prevalent ferroelectric devices, indicating a promising future.
  • [1]
    Dawber M,Rabe K M,Scott J F. Rev. Mod. Phys.,2005,77:1083
    [2]
    Scott J F. Science,2007,315:954
    [3]
    Wei X K,Domingo N,Sun Y et al. Adv. Energy Mater.,2022,12: 2201199
    [4]
    Fong D D,Stephenson G B,Streiffer S K et al. Science,2004, 304:1650
    [5]
    Junquera J,Ghosez P. Nature,2003,422:506
    [6]
    Wang C,You L,Cobden D et al. Nat. Mater.,2023,22:542
    [7]
    Wu M. ACS Nano,2021,15:9229
    [8]
    Chang K,Liu J,Lin H et al. Science,2016,353:274
    [9]
    Xue F,Hu W,Lee K C et al. Adv. Funct. Mater.,2018,28: 1803738
    [10]
    Zhou Y,Wu D,Zhu Y et al. Nano Lett.,2017,17:5508
    [11]
    Cui C,Hu W J,Yan X et al. Nano Lett.,2018,18:1253
    [12]
    Liu F,You L,Seyler K L et al. Nat. Commun.,2016,7:1
    [13]
    Li L,Wu M. ACS Nano,2017,11:6382
    [14]
    Wu M,Li J. Proc. Natl. Acad. Sci.,2021,118:e2115703118
    [15]
    Yasuda K,Wang X,Watanabe K et al. Science,2021,372:1458
    [16]
    Vizner Stern M,Waschitz Y,Cao W et al. Science,2021,372: 1462
    [17]
    Lv M,Sun X,Chen Y et al. Adv. Mater.,2022,34:2203990
    [18]
    Yasuda K,Zalys-Geller E,Wang X et al. Science,2024,385:53
    [19]
    Sui F,Jin M,Zhang Y et al. Nat. Commun.,2023,14:36
    [20]
    Sui F,Li H,Qi R et al. Nat. Commun.,2024,15:3799
    [21]
    Wang Y,Zeng Z,Tian Z et al. Adv. Mater.,2024,36:2410696
    [22]
    Bian R,Cao G,Pan E et al. Nano Lett.,2023,23:4595
    [23]
    Weston A,Castanon E G,Enaldiev V et al. Nat. Nanotechnol., 2022,17:390
    [24]
    Wang X,Yasuda K,Zhang Y et al. Nat. Nanotechnol.,2022,17: 367
    [25]
    Rogée L,Wang L,Zhang Y et al. Science,2022,376:973
    [26]
    Meng P,Wu Y,Bian R et al. Nat. Commun.,2022,13:7696
    [27]
    Deb S,Cao W,Raab N et al. Nature,2022,612:465
    [28]
    Liu Y,Liu S,Li B et al. Nano Lett.,2022,22:1265
    [29]
    Yang D,Liang J,Wu J et al. Nat. Commun.,2024,15:1389
    [30]
    Bian R,He R,Pan E et al. Science,2024,385:57
    [31]
    Ko K H Y,Yuk A,Engelke R et al. Nat. Mater.,2023,22:992
    [32]
    Zhang S,Liu Y,Sun Z et al. Nat. Commun.,2023,14:6200
    [33]
    Fei Z,Zhao W,Palomaki T A et al. Nature,2018,560:336
    [34]
    Sharma P,Xiang F X,Shao D F et al. Sci. Adv.,2019,5: eaax5080
    [35]
    de la Barrera S C,Cao Q,Gao Y et al. Nat. Commun.,2021,12: 5298
    [36]
    Xiao J,Wang Y,Wang H et al. Nat. Phys.,2020,16:1028
    [37]
    Jindal A,Saha A,Li Z et al. Nature,2023,613:48
    [38]
    Wan Y,Hu T,Mao X et al. Phys. Rev. Lett.,2022,128:067601
    [39]
    Li F,Fu J,Xue M et al. Front. Phys.,2023,18:53305
    [40]
    Niu Y,Li L,Qi Z et al. Nat. Commun.,2023,14:5578
    [41]
    Miao L P,Ding N,Wang N et al. Nat. Mater.,2022,21:1158
    [42]
    Ji J,Yu G,Xu C et al. Phys. Rev. Lett.,2023,130:146801
    [43]
    Zheng Z,Ma Q,Bi Z et al. Nature,2020,588:71
    [44]
    Niu R,Li Z,Han X et al. Nat. Commun.,2022,13:6241
    [45]
    Yang L,Wu M. Adv. Funct. Mater.,2023,33:2301105
    [46]
    Yang L,Ding S,Gao J et al. Phys. Rev. Lett.,2023,131:096801
    [47]
    Atri S S,Cao W,Alon B et al. Adv. Phys. Res.,2024,3:2300095
    [48]
    Ding N,Ye H,Dong S. Phys. Rev. B,2024,110:024115
    [49]
    Zhong T,Zhang H,Wu M. Research,7:0428
    [50]
    Zhang C,Zhang Z,Wu Z et al. J. Phys. Chem. Lett.,2024,15: 8049
    [51]
    Wang Z,Gui Z,Huang L. Phys. Rev. B,2023,107:035426
    [52]
    Xu J,Yang Z,Liu W et al. J. Phys.:Condens. Matter,2024,36: 205505
    [53]
    Hou C,Shen Y,Wang Q et al. ACS Nano,2024,18:16923
    [54]
    Tang P,Bauer G E W. Phys. Rev. Lett.,2023,130:176801
    [55]
    Marmolejo-Tejada J M,Roll J E,Poudel S P et al. Nano Lett., 2022,22:7984
    [56]
    He R,Zhang B,Wang H et al. Acta Mater.,2024,262:119416
    [57]
    Liu X,Pyatakov A P,Ren W. Phys. Rev. Lett.,2020,125:247601
    [58]
    Liu K,Ma X,Xu S et al. npj Comput. Mater.,2023,9:16
    [59]
    Yu S,Xu Y,Dai Y et al. Phys. Rev. B,2024,109:L100402
    [60]
    Li H,Zhu W. Nano Lett.,2023,23:10651
    [61]
    Wu Y,Tong J,Deng L et al. Nano Lett.,2023,23:6226
    [62]
    Ma J,Luo X,Zheng Y. npj Comput. Mater.,2024,10:102
    [63]
    Zhang T,Xu X,Huang B et al. npj Comput. Mater.,2022,8:64
    [64]
    Zhong T,Ren Y,Zhang Z et al. J. Mater. Chem. A,2021,9: 19659
    [65]
    Xiao R C,Gao Y,Jiang H et al. npj Comput. Mater.,2022,8:138
    [66]
    Zhang C,Guo P,Zhou J. Nano Lett.,2022,22:9297
    [67]
    Zhou J. npj 2D Mater. Appl.,2022,6:15
    [68]
    Wang H,Qian X. npj Comput. Mater.,2019,5:119
    [69]
    Wang E,Zeng H,Duan W et al. Phys. Rev. Lett.,2024,132: 266802
    [70]
    Feng Y,Dai Y,Huang B et al. Nano Lett.,2023,23:5367
    [71]
    Peng R,Zhang T,He Z et al. Phys. Rev. B,2023,107:085411
    [72]
    Sheng H,Fang Z,Wang Z. Phys. Rev. B,2023,108:104109
    [73]
    Zhang J,Dai Y,Zhang T. Appl. Phys. Lett.,2024,124:252906
    [74]
    Chen H,Wang Q,Feng X et al. Nano Lett.,2023,23:11266
    [75]
    Chen X,Ding X,Gou G et al. Nano Lett.,2024,24:3089
    [76]
    Jafari H,Barts E,Przybysz P et al. Phys. Rev. Mater.,2024,8: 024005
    [77]
    Ding N,Chen J,Gui C et al. Phys. Rev. Mater.,2021,5:084405
    [78]
    Wang J,Li X,Ma X et al. Phys. Rev. Lett.,2024,133:126801
    [79]
    Yang Q,Meng S. Phys. Rev. Lett.,2024,133:136902
    [80]
    Tao Z G,Deng S,Prezhdo O V et al. J. Am. Chem. Soc.,2024, 146:24016
    [81]
    Sun W,Wang W,Yang C et al. Nano Lett.,2024,24:11179
    [82]
    Zhu Y,Long R,Fang W H. Nano Lett.,2023,23:10074
    [83]
    Enaldiev V V,Ferreira F,Magorrian S J et al. 2D Mater.,2021, 8:025030
    [84]
    Zhong T T,Gao Y,Ren Y et al. WIREs Comput. Mol. Sci., 2023,13:e1682
    [85]
    Ji J,Yu G,Xu C et al. Nat. Commun.,2024,15:135
    [86]
    Sheng Y,Wu M,Liu J M. Adv. Funct. Mater.,2024,n/a:2404665
    [87]
    Yang Q,Wu M,Li J. J. Phys. Chem. Lett.,2018,9:7160
    [88]
    Liang J,Yang D,Wu J et al. Phys. Rev. X,2022,12:041005
    [89]
    van Winkle M,Dowlatshahi N,Khaloo N et al. Nat. Nanotechnol.,2024,19:751
    [90]
    Woods C R,Ares P,Nevison-Andrews H et al. Nat. Commun., 2021,12:347
    [91]
    Wang L,Qi J,Wei W et al. Nature,2024,629:74
    [92]
    Qin B,Ma C,Guo Q et al. Science,2024,385:99
    [93]
    Jiang H,Li L,Wu Y et al. Adv. Mater.,2024,36:2400670
    [94]
    Kang K,Zhao W,Zeng Y et al. Nat. Nanotechnol.,2023,18:861
    [95]
    Deb S,Krause J,Faria Junior P E et al. Nat. Commun.,2024,15: 7595
    [96]
    Yang T H,Liang B W,Hu H C et al. Nat. Electron.,2024,7:29
    [97]
    Peng Y,Han G,Xiao W et al. Nanoscale Res. Lett.,2019,14:115
    [98]
    Park J Y,Yang K,Lee D H et al. J. Appl. Phys.,2020,128: 240907
    [99]
    Cao W,Deb S,Stern M V et al. Adv. Mater.,2024,36:2400750
    [100]
    Lv M,Wang J,Tian M et al. Nat. Commun.,2024,15:295
    [101]
    Du S,Yang W,Gao H et al. Adv. Mater.,2024,36:2404177
    [102]
    Wang H,Yang J,Wang Z et al. Appl. Phys. Rev.,2024,11: 011402
    [103]
    Li X,Qin B,Wang Y et al. 2024,arXiv:2401.16150v1
    [104]
    Yang D,Wu J,Zhou B T et al. Nat. Photonics,2022,16:469
    [105]
    Wu J,Yang D,Liang J et al. Sci. Adv.,2022,8:eade3759
    [106]
    Sun Y,Xu S,Xu Z et al. Nat. Commun.,2022,13:5391
  • Related Articles

    [1]WANG Yue, CHEN Ming-Feng, HAN Hao-Jie, MA Jing. Multi-field modulation of ferroelectric films[J]. PHYSICS, 2023, 52(2): 108-115. DOI: 10.7693/wl20230204
    [2]TAN Yi-Fan, ZHENG Jun-Ding, DUAN Chun-Gang. Two-dimensional ferrovalley materials and multiferroic coupling[J]. PHYSICS, 2023, 52(2): 79-88. DOI: 10.7693/wl20230201
    [3]WEI Xiao-Feng, ZHENG Wan-Guo, ZHANG Xiao-Min. Two breakthroughs in the development of high power solid-state laser technology in China[J]. PHYSICS, 2018, 47(2): 73-83. DOI: 10.7693/wl20180202
    [4]LI Yan-Fei, LI Yu-Tong. Recent progress of high-power laser driven laboratory astrophysics[J]. PHYSICS, 2016, 45(2): 80-87. DOI: 10.7693/wl20160202
    [5]Polarization fatigue of ferroelectric Pb(ZrxTi1-x)O3 thin films revisited[J]. PHYSICS, 2008, 37(05): 310-316.
    [6]Ferroelectric thin films and electrodes for random access memories[J]. PHYSICS, 2007, 36(01): 20-25.
    [7]Composition-modulated Cu3NPdx for invariant resistivity over a wide temperature range[J]. PHYSICS, 2006, 35(11): 924-926.
    [8]Recent advance and future in development of high temperature superconducting power technology[J]. PHYSICS, 2006, 35(06): 491-496.
    [9]Controllable high speed rotation of nanowires and micromotors[J]. PHYSICS, 2006, 35(03): 197-201.
    [10]Some issues of the material physics for ultra large scale integration(part Ⅱ) giant challenges for the scaled ulsi[J]. PHYSICS, 2002, 31(01).

Catalog

    Article views (823) PDF downloads (1785) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return