• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TAN Yi-Fan, ZHENG Jun-Ding, DUAN Chun-Gang. Two-dimensional ferrovalley materials and multiferroic coupling[J]. PHYSICS, 2023, 52(2): 79-88. DOI: 10.7693/wl20230201
Citation: TAN Yi-Fan, ZHENG Jun-Ding, DUAN Chun-Gang. Two-dimensional ferrovalley materials and multiferroic coupling[J]. PHYSICS, 2023, 52(2): 79-88. DOI: 10.7693/wl20230201

Two-dimensional ferrovalley materials and multiferroic coupling

More Information
  • Received Date: August 16, 2022
  • Available Online: February 17, 2023
  • Published Date: August 16, 2022
  • Valleytronic materials encode and process information by modulating the valley degrees of freedom, and have great potential for information memory devices of the next generation. The coupling of the valley degrees of freedom with various ferroic order parameters will be of great advantage for nonvolatile memory technology, and can promote the development of both valley physics and multiferroic physics. This paper presents an overview of the valleytronics physical background and enumerates various ferrovalley materials with spontaneous valley polarization. Secondly, magnetoelectric valley coupling of two-dimensional multiferroic materials is summarized, Finally, latest progress of valleytronic applications is introduced, potential applications of multiferroic coupling of two-dimensional ferrovalley materials are outlined.
  • [1]
    Rycerz A, Tworzydło J, Beenakker C W J. Nat. Phys., 2007, 3:172
    [2]
    Tao L L, Tsymbal E Y. Phys. Rev. B, 2019, 100:161110
    [3]
    Garcia-Pomar J L,Cortijo A,Nieto-Vesperinas M. Phys. Rev. Lett., 2008, 100:236801
    [4]
    Xiao D, Yao W, Niu Q. Phys. Rev. Lett., 2007, 99:236809
    [5]
    Shkolnikov Y P, De Poortere E P, Tutuc E et al. Phys. Rev. Lett., 2002, 89:226805
    [6]
    Gunawan O,Shkolnikov Y P,Vakili K et al. Phys. Rev. Lett., 2006, 97:186404
    [7]
    Cai T, Yang S A, Li X et al. Phys. Rev. B, 2013, 88:115140
    [8]
    Sham L J, Allen S J, Kamgar A et al. Phys. Rev. Lett., 1978, 40:472
    [9]
    Goswami S, Slinker K A, Friesen M et al. Nat. Phys., 2006, 3:41
    [10]
    Isberg J, Gabrysch M, Hammersberg J et al. Nat. Mater., 2013, 12:760
    [11]
    Novoselov K S, Geim A K, Morozov S V et al. Science, 2004, 306:666
    [12]
    Xiao D, Liu G B, Feng W et al. Phys. Rev. Lett., 2012, 108:196802
    [13]
    Srivastava A, Sidler M, Allain A V et al. Nat. Phys., 2015, 11:141
    [14]
    Aivazian G, Gong Z, Jones A M et al. Nat. Phys., 2015, 11:148
    [15]
    MacNeill D, Heikes C, Mak K F et al. Phys. Rev. Lett., 2015, 114:037401
    [16]
    Sie E J. Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides. Springer Theses,2018. p.37
    [17]
    Cheng Y C,Zhang Q Y,Schwingenschlögl U. Phys. Rev. B, 2014, 89:155429
    [18]
    Andriotis A N, Menon M. Phys. Rev. B, 2014, 90:125304
    [19]
    Qi J, Li X, Niu Q et al. Phys. Rev. B, 2015, 92:121403
    [20]
    Zhang Q, Yang S A, Mi W et al. Adv. Mater., 2016, 28:959
    [21]
    Tong W Y,Gong S J,Wan X et al. Nat. Commun.,2016,7:13612
    [22]
    Xie J, Jia L, Shi H et al. Jpn. J. Appl. Phys., 2018, 58:010906
    [23]
    Neto A C, Guinea F, Peres N M et al. Rev. Mod. Phys., 2009, 81:109
    [24]
    Xiao D, Chang M C, Niu Q. Rev. Mod. Phys., 2010, 82:1959
    [25]
    Cao T, Wang G, Han W et al. Nat. Commun., 2012, 3:887
    [26]
    Zeng H, Dai J, Yao W et al. Nat. Nanotechnol., 2012, 7:490
    [27]
    Mak K F, He K, Shan J et al. Nat. Nanotechnol., 2012, 7:494
    [28]
    Ye Y, Xiao J, Wang H et al. Nat. Nanotechnol., 2016, 11:598
    [29]
    Wan Y, Xiao J, Li J et al. Adv. Mater., 2018, 30:1703888
    [30]
    Shen X W,Tong W Y,Gong S J et al. 2D Mater.,2017,5:011001
    [31]
    Hu H, Tong W Y, Shen Y H et al. npj Comput. Mater., 2020, 6:129
    [32]
    Huan H, Xue Y, Zhao B et al. Phys. Rev. B, 2021, 104:165427
    [33]
    Kim J, Kim K W, Kim B et al. Nano Lett., 2019, 20:929
    [34]
    Wang Z, Zhang T, Ding M et al. Nat. Nanotechnol., 2018, 13:554
    [35]
    Song T, Cai X, Tu M W Y et al. Science, 2018, 360:1214
    [36]
    Jiang S, Shan J, Mak K F. Nat. Mater., 2018, 17:406
    [37]
    Zhang Z, Ni X, Huang H et al. Phys. Rev. B, 2019, 99:115441
    [38]
    Peng B, Zhou Z, Nan T et al. ACS nano, 2017, 11:4337
    [39]
    Matsukura F, Tokura Y, Ohno H. Nat. Nanotechnol., 2015, 10:209
    [40]
    Seyler K L, Zhong D, Huang B et al. Nano Lett., 2018, 18:3823
    [41]
    Zhong D,Seyler K L,Linpeng X et al. Sci. Adv.,2017,3:e1603113
    [42]
    Hu T, Zhao G, Gao H et al. Phys. Rev. B, 2020, 101:125401
    [43]
    Li L, Jiang S, Wang Z et al. Phys. Rev. Mater., 2020, 4:104005
    [44]
    Hu H, Tong W Y, Shen Y H et al. J. Mater. Chem. C, 2020, 8:18
    [45]
    Liu F, You L, Seyler K L et al. Nat. Commun., 2016, 7:12357
    [46]
    Wang X, Yasuda K, ZhangY et al. Nat. Nanotechnol., 2022, 17:367
    [47]
    Hu H, Sun Y, Chai M et al. Appl. Phys. Lett., 2019, 114:252903
    [48]
    Liu X, Pyatakov A P, Ren W. Phys. Rev. Lett., 2020, 125:247601
    [49]
    Zhang T, Xu X, Huang B et al. npj Comput. Mater., 2022, 8:64
    [50]
    Chen Y, Qian S, Wang K et al. Nat. Nanotechnol., 2022, 17:1178
    [51]
    Wu B, Liu X, Yin J et al. Materials Research Express, 2017, 4:095902
    [52]
    Chen J, Zhou Y, Yan J et al. Nat. Commun., 2022, 13:7758
  • Related Articles

    [1]XU Tian-Qi, WU Xue-Zhi, YAN Xue-Qing. Development and prospects of laser ion accelerators[J]. PHYSICS, 2021, 50(10): 671-677. DOI: 10.7693/wl20211003
    [2]SHENG Zheng-Ming, CHEN Min, WENG Su-Ming, YUAN Xiao-Hui, CHEN Li-Ming, ZHANG Jie. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. PHYSICS, 2018, 47(12): 753-762. DOI: 10.7693/wl20181201
    [3]LUO Peng, WANG Si-Cheng, HU Zheng-Guo, XU Hu-Shan, ZHAN Wen-Long. Accelerator driven sub-critical systems——a promising solution for cycling nuclear fuel[J]. PHYSICS, 2016, 45(9): 569-577. DOI: 10.7693/wl20160903
    [4]ZHAO Yong-Tao, XIAO Guo-Qing, LI Fu-Li. The physics of inertial confinement fusion based on modern accelerators: status and perspectives[J]. PHYSICS, 2016, 45(2): 98-107. DOI: 10.7693/wl20160204
    [5]Phase-stable acceleration in laser plasma interactions[J]. PHYSICS, 2008, 37(09): 625-627.
    [6]Frontiers of particle accelerators in the world[J]. PHYSICS, 2008, 37(05): 289-297.
    [7]A tabletop accelerator——the laser wakefield accelerator[J]. PHYSICS, 2006, 35(12): 1016-1027.
    [8]A activity nuclear analysis technology——the last development of accelerator mass spectrometry[J]. PHYSICS, 2006, 35(06): 508-513.
    [9]Measurement of 41Ca with accelerator mass spectrometry and its applications[J]. PHYSICS, 2003, 32(09).
    [10]A NEW MECHANISM OF ELECTRON ACCELERATION WITH RELATIVISTIC-INTENSE LASER PULSES IN PLASMA[J]. PHYSICS, 2003, 32(01).

Catalog

    Article views (1012) PDF downloads (2077) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return