• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
SUN Zhe, LI Ming. Beamlines and applications of the fourth-generation synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 80-88. DOI: 10.7693/wl20240202
Citation: SUN Zhe, LI Ming. Beamlines and applications of the fourth-generation synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 80-88. DOI: 10.7693/wl20240202

Beamlines and applications of the fourth-generation synchrotron radiation light source

More Information
  • Received Date: January 29, 2024
  • Available Online: February 22, 2024
  • With the emergence of fourth-generation synchrotron radiation light sources, significant improvements in X-ray brightness and coherence have led to notable advancements in synchrotron experimental techniques such as spectroscopy, scattering, and imaging. These techniques are capable of probing key information on structure, composition, chemical states, electronic states, and magnetism in complex heterogeneous systems and dynamic processes, playing a critical role in fundamental scientific and applied research. This article aims to evaluate the technical advantages of beamlines at fourth-generation synchrotron radiation light sources, and, with specific examples, to discuss their applications in various physical research areas, as well as current engineering and technical challenges. Through this article, we hope to promote the widespread application of fourth-generation synchrotron light sources across various research fields.
  • [1]
    Als-Nielsen J,McMorrow D著,封东来译 . 现代X光物理原理. 上海:复旦大学出版社,2015
    [2]
    麦振洪等. 同步辐射光源及其应用(上、下). 北京:科学出版社, 2013
    [3]
    Mobilio S,Boscherini F,Meneghini C. Synchrotron Radiation: Basics,Methods and Applications. Springer,2015
    [4]
    Beaurepaire E et al. Magnetism and Synchrotron Radiation:Towards the Fourth Generation Light Sources. Springer,2013
    [5]
    Eberhardt W. J. Electron Spectrosc.,2015,200:31
    [6]
    Eriksson M,van der Veen J F,Quitmann C. J. Synchrotron Radiat.,2014,21:837
    [7]
    邰仁忠. 物理,2021,50(8):501
    [8]
    Mino L,Borfecchia E,Segura-Ruiz J et al. Rev. Mod. Phys., 2018,90(2):025007
    [9]
    Cramer S P. X-Ray Spectroscopy with Synchrotron Radiation Fundamentals and Applications. Springer,2020
    [10]
    Stangl J,Mocuta C,Chamard V et al. Nanobeam X‐Ray Scattering:Probing Matter at the Nanoscale,Wiley-VCH,2013
    [11]
    Hashimoto T. Principles and Applications of X-ray, Light and Neutron Scattering. Springer, 2020
    [12]
    Jeffries C M,Ilavsky J,Martel A et al. Nat Rev Method Prime., 2021,1(1):70
    [13]
    Withers P J,Bouman C,Carmignato S et al. Nat. Rev. Method Prime.,2021,1(1):18
    [14]
    Ou X Y,Chen X,Xu X N et al. Research,2021,2021:9892152
    [15]
    袁清习,邓彪,关勇等. 物理,2019,48(4):205
    [16]
    Lou S F,Sun N,Zhang F et al. Accounts Mater Res.,2021,2(12):1177
    [17]
    Hitchcock A P,Toney M F. J. Synchrotron Radiat.,2014,21:1019
    [18]
    Zhang L,Barrett R,Friedrich K et al. J. Phys. Conf. Ser.,2013, 425:052029
    [19]
    Sobota J A,He Y,Shen Z X. Rev. Mod. Phys.,2021,93(2): 025006
    [20]
    Rotenberg E,Bostwick A. J. Synchrotron Radiat.,2014,21:1048
    [21]
    Majchrzak P,Muzzio R,Jones A J H et al. Small. Sci.,2021,1(6):2000075
    [22]
    Sutton M,Mochrie S G J,Greytak T et al. Nature,1991,352(6336):608
    [23]
    Shpyrko O G. J. Synchrotron Radiat.,2014,21:1057
    [24]
    Shpyrko O G,Isaacs E D,Logan J M et al. Nature,2007,447(7140):68
    [25]
    Ju G X,Xu D W,Highland M et al. Nat. Phys.,2019,15(6):589
    [26]
    Leheny R L. Curr. Opin. Colloid. In.,2012,17(1):3
    [27]
    Leitner M,Sepiol B,Stadler LM et al. Nat Mater.,2009,8(9):717
    [28]
    Sandy A R,Zhang Q T,Lurio L B et al. Annual Review of Materials Research,2018,48:167
    [29]
    Zhang Q T,Dufresne E M,Sandy A R. Curr. Opin. Solid. St. M., 2018,22(5):202
    [30]
    范家东,江怀东. 物理学报,2012,61(21):218702
    [31]
    Miao J W,Ishikawa T,Robinson I K et al. Science,2015,348(6234):530
    [32]
    Rau C. Synchrotron Radiation News,2017,30(5):19
    [33]
    Lo Y H,Zhao L R,Gallagher-Jones M et al. Nat. Commun., 2018,9:1826
    [34]
    Prosekov P A,Nosik V L,Blagov A E. Crystallogr Reports, 2021,66(6):867
    [35]
    Pfeiffer F. Nat Photonics,2018,12(1):9
    [36]
    Tripathi A,Mohanty J,Dietze S H et al. P. Natl. Acad. Sci. USA.,2011,108(33):13393
    [37]
    Holler M,Guizar-Sicairos M,Tsai E H R et al. Nature,2017,543(7645):402
    [38]
    Carbone D,Kalbfleisch S,Johansson U et al. J. Synchrotron Radiat.,2022,29:876
    [39]
    Arul K T,Chang H W,Shiu H W et al. J. Phys D Appl. Phys., 2021,54(34):343001
    [40]
    Varsha M V,Nageswaran G. Front. Chem.,2020,8:23
    [41]
    Yang Y W,Li X Y,Lu H H. Nucl. Instrum. Meth A,2021,1011: 165579
    [42]
    Li J Z,Huang X B,Pianetta P et al. Nat. Rev. Phys.,2021,3(12): 766
  • Related Articles

    [1]SUN Zhi-Bin, FAN Jia-Dong, JIANG Huai-Dong. Single particle imaging with X-ray free electron lasers[J]. PHYSICS, 2018, 47(8): 491-502. DOI: 10.7693/wl20180802
    [2]Applications of X-ray magnetic dichroism in spintronics[J]. PHYSICS, 2010, 39(06): 406-415.
    [3]Atomic coherence[J]. PHYSICS, 2008, 37(03): 144-151.
    [4]X-ray phase contrast imaging[J]. PHYSICS, 2007, 36(06): 443-451.
    [5]Line focusing——a key factor in the generation of saturated output from X-ray lasers[J]. PHYSICS, 2006, 35(12): 1060-1063.
    [6]Quantum coherence of light and precision measurement of optical frequency—an introduction to the 2005 nobel prize in physics[J]. PHYSICS, 2006, 35(03): 207-212.
    [7]SYNCHROTRON RADIATION X-RAY DIFFRACTION FACILITY AT NSRL AND ITS APPLICATIONS IN MACROMOLECULAR CRYSTALLOGRAPHY[J]. PHYSICS, 2003, 32(02).
    [8]Fifty years of synchrotron radiation[J]. PHYSICS, 2002, 31(10).
    [9]Soft xray microscopy[J]. PHYSICS, 2002, 31(05).
    [10]The use of synchrotron radiation x-ray fluorescence inmicroelemental analysis in plants[J]. PHYSICS, 2002, 31(02).
  • Cited by

    Periodical cited type(14)

    1. 孙喆,李明. 第四代同步辐射光源的光束线站及其应用. 物理. 2024(02): 80-88 . 本站查看
    2. 高若阳,张玲,陶芬,汪俊,苏博,毕志杰,杜国浩,邓彪,肖体乔. 锂电池正极材料化学及形貌的X射线纳米谱学成像研究. 光谱学与光谱分析. 2024(05): 1239-1244 .
    3. 赵高峰,祝万钱,张丽敏,刘芳芳,金利民,薛松. 纳弧度级柔性角位移调节机构的优化设计. 核技术. 2024(06): 3-12 .
    4. 刘聪,王飞翔,陶芬,杜国浩,张玲,汪俊,邓彪. X射线纳米分辨立体成像及其在芯片表征中的应用. 光学学报. 2024(13): 332-340 .
    5. 王野平,董远川,黄韬. 飞针测试机侧向驱动零件的有限元分析与结构优化. 印制电路信息. 2023(02): 55-58 .
    6. 梁柯林,李爱国,董晓浩,徐中民,吕丽军. 基于ANSYS Workbench的上海光源纳米探针线站多层膜有限元热分析. 工业控制计算机. 2022(05): 60-63 .
    7. 范玉芹,崔丽巍,王黎明,赵甲亭,李柏,李玉锋. 基于大科学装置的空间金属组学和单细胞/单颗粒金属组学. 中国无机分析化学. 2022(04): 63-74 .
    8. 陈意,胡兆初,贾丽辉,李金华,李秋立,李晓光,李展平,龙涛,唐旭,王建,夏小平,杨蔚,原江燕,张迪,李献华. 微束分析测试技术十年(2011~2020)进展与展望. 矿物岩石地球化学通报. 2021(01): 1-35+253 .
    9. 郑金成,王惠琼. 同步辐射技术和透射电镜技术以及密度泛函理论相结合的综合表征方法及其应用. 中国科学:物理学 力学 天文学. 2021(03): 67-79 .
    10. 靳雅丽,杨德智,杨世颖,张丽,吕扬. 纳米药物分析技术方法研究新进展. 医药导报. 2021(04): 491-495 .
    11. 谈志杰,李晴宇,喻虹,韩申生. X射线及粒子关联成像技术研究进展. 激光与光电子学进展. 2021(10): 109-120 .
    12. 苏博,陶芬,李可,杜国浩,张玲,李中亮,邓彪,谢红兰,肖体乔. 同步辐射纳米CT图像配准方法研究. 物理学报. 2021(16): 53-67 .
    13. 刘云鹏,盛伟繁,吴忠华. 同步辐射及其在无机材料中的应用进展. 无机材料学报. 2021(09): 901-918 .
    14. 康新尉,陈乐,陈凤,宋丽贤. SiO_2/硅橡胶复合体系填料网络的形成与结构表征. 西南科技大学学报. 2020(02): 55-62 .

    Other cited types(10)

Catalog

    Article views (727) PDF downloads (1691) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return