• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Ke-Lin, GAO Xian-Long, CAO Ze-Xian. Dimensionless quantum mechanical state vector[J]. PHYSICS, 2023, 52(9): 625-632. DOI: 10.7693/wl20230904
Citation: WANG Ke-Lin, GAO Xian-Long, CAO Ze-Xian. Dimensionless quantum mechanical state vector[J]. PHYSICS, 2023, 52(9): 625-632. DOI: 10.7693/wl20230904

Dimensionless quantum mechanical state vector

More Information
  • Received Date: August 30, 2023
  • Available Online: September 21, 2023
  • Starting from the superposition principle, Dirac introduced complex vector space representation for quantum mechanics, leaving behind in a hash some flaws in the theory, in particular dimension discrepancy concerning the basis vector sets {|<i<x</i<<} and {|<i<p</i<<} for position operator and momentum operator, respectively. A remedy for this discrepancy was recently proposed by assigning dimension to the state vectors |<i<x</i<< and |<i<p</i<<, which is unacceptable and may bring with new confronts. Abiding by the principle of dimensionless representation for state vectors, and thus the relevant transformations, we formulate a dimensionless representation for the state vectors for position and momentum, i.e., |<i<q</i<<and |<i<p</i<<, by using the annihilation and creation operators <i<a</i<, <i<a</i<<sup<+</sup<, thus eliminate the problems caused by dimension discrepancy in quantum mechanics literature.
  • [1]
    Dirac P A M. The Principles of Quantum Mechanics, Fourth Edi‐ tion. Oxford University Press, 1967
    [2]
    Schrödinger E. Ann. Phys., 1926, 79: 361; 1926, 79: 489; 1926, 80: 437; 1926, 81: 109
    [3]
    汪克林, 曹则贤. 物理, 2022, 51(9): 645
    [4]
    Gieres F. Reports on Progress in Physics, 2000, 63(12): 1893
    [5]
    Semay C, Willemyns C. Do Bras and Kets have Dimensions? 2020, arXiv: 2008.03187v1
    [6]
    Griffiths D J, Schroeter D F. Introduction to Quantum Mechanics. Cambridge University Press, 2018
    [7]
    Heisenberg W. Zeitschrift für Physik, 1927, 43: 172
    [8]
    Dirac P A M. Proc. Roy. Soc. London, Series A, 1927, 114(767): 243
    [9]
    Avery J. Creation and Annihilation Operators. McGraw-Hill, 1976
    [10]
    汪克林,高先龙,曹则贤. 物理, 2021, 50(3): 177
  • Related Articles

    [1]WANG Ke-Lin, CAO Ze-Xian. Resolving some confusion over the representation and interpretation of quantum mechanics[J]. PHYSICS, 2024, 53(7): 472-480. DOI: 10.7693/wl20240705
    [2]WANG Ke-Lin, CAO Ze-Xian. A realization of representation theory[J]. PHYSICS, 2024, 53(3): 168-173. DOI: 10.7693/wl20240305
    [3]WANG Ke-Lin, CAO Ze-Xian. Necessary condition for a Hamiltonian to be proper in quantum mechanics[J]. PHYSICS, 2022, 51(9): 645-648. DOI: 10.7693/wl20220906
    [4]Keith Cooper. Finding a consistent constant[J]. PHYSICS, 2020, 49(8): 548-549.
    [5]SUN Chang-Pu. On interpretations of quantum mechanics[J]. PHYSICS, 2017, 46(8): 481-498. DOI: 10.7693/wl20170801
    [6]GU Jun-Xing, JIN Kui-Juan. Photo-assisted non-destructive readout of thin-film ferroelectric memories[J]. PHYSICS, 2015, 44(08): 503-508. DOI: 10.7693/wl20150803
    [7]JIN Yu-Ling, JIN Kui-Juan. The physical properties of multiferroic BiFeO3 heterostructures under multi-field coupling[J]. PHYSICS, 2014, 43(04): 236-245. DOI: 10.7693/wl20140403
    [8]State of mixed-helicities for massless neutrino[J]. PHYSICS, 2012, 41(03): 168-171.
    [9]New progress of research on nuclear physics in Department of Physics of Tsinghua University[J]. PHYSICS, 2006, 35(05): 382-387.
    [10]Electronic states in finite crystals[J]. PHYSICS, 2003, 32(10).
  • Cited by

    Periodical cited type(2)

    1. 汪克林,曹则贤. 量子力学表示理论的一种实现. 物理. 2024(03): 168-173 . 本站查看
    2. 汪克林,曹则贤. 再议量子理论的表述形式与诠释. 物理. 2024(07): 472-480 . 本站查看

    Other cited types(0)

Catalog

    Article views (317) PDF downloads (1592) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return