• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JIN Yu-Ling, JIN Kui-Juan. The physical properties of multiferroic BiFeO3 heterostructures under multi-field coupling[J]. PHYSICS, 2014, 43(04): 236-245. DOI: 10.7693/wl20140403
Citation: JIN Yu-Ling, JIN Kui-Juan. The physical properties of multiferroic BiFeO3 heterostructures under multi-field coupling[J]. PHYSICS, 2014, 43(04): 236-245. DOI: 10.7693/wl20140403

The physical properties of multiferroic BiFeO3 heterostructures under multi-field coupling

More Information
  • Received Date: November 20, 2013
  • Published Date: April 11, 2014
  • The resistive switching and switchable diode effects in BiFeO3 heterostructures have been investigated. A self-consistent numerical model, which includes the incomplete screening effect of metal electrodes, has been developed to reveal the mechanism of the switchable diode behavior in metal-ferroelectric-metal structures. Experimental studies have been conducted on the effect of the BiFeO3 film thickness on the electric and magnetic properties of the BiFeO3/La0.7Sr0.3MnO3 heterostructure, as well as the resistive switching effect and photoelectric behavior in Au/BiFeO3/La0.7Sr0.3MnO3/SrTiO3 heterostructures under electro-photo dual modulation. Our results should open a way for potential applications through combining multiple degrees of freedom in devices.
  • Related Articles

    [1]CHEN Si-Yuan, HUANG Qing-Guo. The North American Nanohertz Observatory for Gravitational Waves[J]. PHYSICS, 2024, 53(8): 532-540. DOI: 10.7693/wl20240805
    [2]CAI Yi-Fu, YAN Sheng-Feng. From wandering earth to space trek——Interpretation of the 2019 Nobel Prize in Physics[J]. PHYSICS, 2020, 49(1): 1-7. DOI: 10.7693/wl20200101
    [3]ZHANG Peng-Jie. GW170817 and standard siren cosmology[J]. PHYSICS, 2019, 48(9): 588-592. DOI: 10.7693/wl20190907
    [4]XIAO Di, GENG Jin-Jun, DAI Zi-Gao. Binary neutron star mergers: gravitational wave emission and electromagnetic counterparts[J]. PHYSICS, 2019, 48(9): 545-553. DOI: 10.7693/wl20190901
    [5]ZHANG Xin-Min, SU Meng, LI Hong, WAN You-Ping, CAI Yi-Fu, LI Ming-Zhe, PIAO Yun-Song. The origin of the universe and the Ali primordial gravitational waves detection[J]. PHYSICS, 2016, 45(5): 320-326. DOI: 10.7693/wl20160506
    [6]ZHANG Shuang-Nan. The black holes in the gravitational event of the Laser Interferometer Gravitational-wave Observatory[J]. PHYSICS, 2016, 45(5): 311-319. DOI: 10.7693/wl20160505
    [7]ZHU Zong-Hong, WANG Yun-Yong. The prediction,detection and discovery of gravitational wave[J]. PHYSICS, 2016, 45(5): 300-310. DOI: 10.7693/wl20160504
    [8]FENG Yan. Laser interferometer gravitational-wave detectors——hearing aids for human on deep universe[J]. PHYSICS, 2016, 45(5): 293-299. DOI: 10.7693/wl20160503
    [9]LI Yong. Gravitational waves: ripples in spacetime and music of the spheres[J]. PHYSICS, 2016, 45(5): 287-292. DOI: 10.7693/wl20160502
    [10]MA Yin-Zhe. Planck: discovering insight of the Universe[J]. PHYSICS, 2015, 44(03): 137-151. DOI: 10.7693/wl20150301

Catalog

    Article views (74) PDF downloads (1739) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return