• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Si-Yuan, HUANG Qing-Guo. The North American Nanohertz Observatory for Gravitational Waves[J]. PHYSICS, 2024, 53(8): 532-540. DOI: 10.7693/wl20240805
Citation: CHEN Si-Yuan, HUANG Qing-Guo. The North American Nanohertz Observatory for Gravitational Waves[J]. PHYSICS, 2024, 53(8): 532-540. DOI: 10.7693/wl20240805

The North American Nanohertz Observatory for Gravitational Waves

More Information
  • Received Date: July 09, 2024
  • The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a pulsar timing array collaboration based in the USA and Canada, and is part of the International Pulsar Timing Array (IPTA) consortium. In this article we focus on the history of the collaboration and the milestones that have been achieved. Data sets, analysis methods and interpretation have been done by NANOGrav since 2007, leading to the announcement in June 2023 of evidence of a gravitational wave (GW) background by several IPTA members. Using the 15 year data set, NANOGrav has reported a nominal amplitude of around 2.4×10-15 for a common red signal and a significance of ~3.5σ for the characteristic spatial correlations required for a GW background. The expected increase in sensitivity through combination of data sets, such as the upcoming IPTA DR3, and future data sets will confirm the GW origin of the signal, which should constrain the properties of the source and the implications of various theories of gravity.
  • [1]
    Demorest P B et al. ApJ,2013,762:94
    [2]
    Arzoumanian Z et al. ApJ,2015,813:65
    [3]
    Arzoumanian Z et al. ApJ,2016,821:13
    [4]
    Arzoumanian Z et al. ApJS,2018,235:37
    [5]
    Arzoumanian Z et al. ApJ,2018,859:47
    [6]
    Alam Md F et al. ApJS,2021,252:4
    [7]
    Alam Md F et al. ApJS,2021,252:5
    [8]
    Arzoumanian Z et al. ApJ,2020,905:34
    [9]
    Agazie G et al. ApJ,2023,951:9
    [10]
    Agazie G et al. ApJ,2023,951:8
    [11]
    Verbiest J P W et al. MNRAS,2016,458:1267
    [12]
    Perera B B P et al. MNRAS,2019,490:4666
    [13]
    Antoniadis J et al. MNRAS,2022,51:4873
    [14]
    Nice D et al. Astrophysics Source Code Library,2015,1509:002
    [15]
    Hobbs G B,Edwards R T,Manchester R N. MNRAS,2006, 369:655
    [16]
    Luo J et al. ApJ,2021,911:45
    [17]
    Lentati L et al. MNRAS,2014,437:3004
    [18]
    Ellis J et al. Astrophysics Source Code Library,2020,1912:015
    [19]
    Stovall K et al. ApJ,2014,791:67
    [20]
    Nice D J et al. ApJ,2013,772:50
    [21]
    Cromartie H T et al. Nat. Astron.,2020,4:72
    [22]
    Kramer M et al. Phys. Rev. X,2021,11:041050
    [23]
    Agazie G et al. ApJ,2023,952:37
    [24]
    Agazie G et al. ApJ,2023,956:3
    [25]
    Becsy B,Cornish N J,Digman M C. Phys. Rev. D,2022,105: 122003
    [26]
    Arzoumanian Z et al. ApJ,2014,794:141
    [27]
    Aggarwal K et al. ApJ,2019,880:116
    [28]
    Arzoumanian Z et al. ApJ,2023,951:28
    [29]
    Agazie G et al. ApJ,2023,951:50
    [30]
    Arzoumanian Z et al. Phys. Rev. Lett.,2021,127:251302
    [31]
    Afzal A et al. ApJ,2023,951:11
    [32]
    Chen Z,Yuan C,Huang Q G. Sci. China Phys. Mech. Astron., 2021,64:120412
    [33]
    Arzoumanian Z et al. ApJ,2021,923:22
    [34]
    Agazie G et al. ApJ,2024,964:14
    [35]
    Chen Z C,Wu Y M,Bi Y C et al. Phys. Rev. D,2024,109: 084045
  • Related Articles

    [1]LEE Ke-Jia, XU Ren-Xin. Pulsars and pulsar timing arrays[J]. PHYSICS, 2024, 53(8): 507-511. DOI: 10.7693/wl20240801
    [2]LIU Ruo-Yu, LI Chao-Ming. Astrophysical origins of ultra-high energy gamma-ray emissions[J]. PHYSICS, 2024, 53(4): 245-253. DOI: 10.7693/wl20240404
    [3]XU Dong-Lian. Neutrino emission from binary neutron star mergers[J]. PHYSICS, 2019, 48(9): 593-599. DOI: 10.7693/wl20190908
    [4]YU Yun-Wei. An introduction to kilonovae[J]. PHYSICS, 2019, 48(9): 581-587. DOI: 10.7693/wl20190906
    [5]ZHOU En-Ping. Numerical relativity and binary neutron star mergers[J]. PHYSICS, 2019, 48(9): 573-580. DOI: 10.7693/wl20190905
    [6]SHAO Li-Jing. GW170817: was Einstein right?[J]. PHYSICS, 2019, 48(9): 567-572. DOI: 10.7693/wl20190904
    [7]CHEN Hai-Liang, CHEN Xue-Fei, HAN Zhan-Wen. Population synthesis of double neutron stars[J]. PHYSICS, 2019, 48(9): 561-566. DOI: 10.7693/wl20190903
    [8]LAI Xiao-Yu, XU Ren-Xin. The inner structure of neutron stars[J]. PHYSICS, 2019, 48(9): 554-560. DOI: 10.7693/wl20190902
    [9]ZHANG Shuang-Nan. The black holes in the gravitational event of the Laser Interferometer Gravitational-wave Observatory[J]. PHYSICS, 2016, 45(5): 311-319. DOI: 10.7693/wl20160505
    [10]Michael Schirber. Gamma-Ray Bursts Determine Potential Locations for Life[J]. PHYSICS, 2015, 44(02): 110-110.
  • Cited by

    Periodical cited type(5)

    1. 胥恒,李柯伽. 中国脉冲星计时阵. 物理. 2024(08): 512-517 . 本站查看
    2. 肖志刚. 重离子核反应与核物质状态方程. 物理. 2020(03): 137-143 . 本站查看
    3. 邵立晶. GW170817:爱因斯坦对了吗?. 物理. 2019(09): 567-572 . 本站查看
    4. 张鹏杰. GW170817与标准汽笛宇宙学. 物理. 2019(09): 588-592 . 本站查看
    5. 来小禹,徐仁新. 中子星内部结构. 物理. 2019(09): 554-560 . 本站查看

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return