• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHOU En-Ping. Numerical relativity and binary neutron star mergers[J]. PHYSICS, 2019, 48(9): 573-580. DOI: 10.7693/wl20190905
Citation: ZHOU En-Ping. Numerical relativity and binary neutron star mergers[J]. PHYSICS, 2019, 48(9): 573-580. DOI: 10.7693/wl20190905

Numerical relativity and binary neutron star mergers

More Information
  • Received Date: July 04, 2019
  • Published Date: September 11, 2019
  • The direct detection of the inspiraling gravitational wave signal from the binary neutron star merger GW170817, by LIGO, together with the detection of its electromagnetic counterparts GRB170817A and AT2017gfo, announced the birth of the multi-messenger astronomy era. Numerical relativity, i.e. solving Einstein’s equation with numerical methods to simulate the binary merger process, played a crucial role in the detection of the gravitational wave signal as well as in interpreting the properties of the source. Moreover, the results of numerical relativity studies of binary neutron star mergers are essential for understanding the counterpart electromagnetic observations. In this article, the history and evolution of numerical relativity will be reviewed, as well as its role in gravitational wave detection and interpretation of the observations.
  • Related Articles

    [1]CHEN Si-Yuan, HUANG Qing-Guo. The North American Nanohertz Observatory for Gravitational Waves[J]. PHYSICS, 2024, 53(8): 532-540. DOI: 10.7693/wl20240805
    [2]XIAO Zhi-Gang. Heavy ion reactions and equation of state of nuclear matter[J]. PHYSICS, 2020, 49(3): 137-143. DOI: 10.7693/wl20200301
    [3]XU Dong-Lian. Neutrino emission from binary neutron star mergers[J]. PHYSICS, 2019, 48(9): 593-599. DOI: 10.7693/wl20190908
    [4]SHAO Li-Jing. GW170817: was Einstein right?[J]. PHYSICS, 2019, 48(9): 567-572. DOI: 10.7693/wl20190904
    [5]CHEN Hai-Liang, CHEN Xue-Fei, HAN Zhan-Wen. Population synthesis of double neutron stars[J]. PHYSICS, 2019, 48(9): 561-566. DOI: 10.7693/wl20190903
    [6]LAI Xiao-Yu, XU Ren-Xin. The inner structure of neutron stars[J]. PHYSICS, 2019, 48(9): 554-560. DOI: 10.7693/wl20190902
    [7]XIAO Di, GENG Jin-Jun, DAI Zi-Gao. Binary neutron star mergers: gravitational wave emission and electromagnetic counterparts[J]. PHYSICS, 2019, 48(9): 545-553. DOI: 10.7693/wl20190901
    [8]ZHANG Shuang-Nan. The black holes in the gravitational event of the Laser Interferometer Gravitational-wave Observatory[J]. PHYSICS, 2016, 45(5): 311-319. DOI: 10.7693/wl20160505
    [9]Wide-range equation of state problem for engineering technology[J]. PHYSICS, 2009, 38(12): 920-920.
    [10]Equations of state under extremely high pressure obtained by high power laser experiments[J]. PHYSICS, 2007, 36(06): 465-471.
  • Cited by

    Periodical cited type(4)

    1. 许妍. 天文观测对中子星内部结构的可能约束. 天文学进展. 2022(02): 193-204 .
    2. 邵立晶. GW170817:爱因斯坦对了吗?. 物理. 2019(09): 567-572 . 本站查看
    3. 张鹏杰. GW170817与标准汽笛宇宙学. 物理. 2019(09): 588-592 . 本站查看
    4. 来小禹,徐仁新. 中子星内部结构. 物理. 2019(09): 554-560 . 本站查看

    Other cited types(1)

Catalog

    Article views (145) PDF downloads (1316) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return