• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
BAI Ruo-Ran, ZHANG Li-Ru, HUANG Hai-Ping. The Nobel Prize in Physics 2024 and related interdisciplinary studies[J]. PHYSICS, 2025, 54(1): 19-24. DOI: 10.7693/wl20250103
Citation: BAI Ruo-Ran, ZHANG Li-Ru, HUANG Hai-Ping. The Nobel Prize in Physics 2024 and related interdisciplinary studies[J]. PHYSICS, 2025, 54(1): 19-24. DOI: 10.7693/wl20250103

The Nobel Prize in Physics 2024 and related interdisciplinary studies

More Information
  • Received Date: December 04, 2024
  • Available Online: January 16, 2025
  • In 2024, Hopfield and Hinton were awarded the Nobel Prize in Physics for their fundamental contributions to neural-network based artificial intelligence (AI), which triggered much debate on whether AI belongs to physics and how physics contributes to AI. Here, we review the history of how physics contributed to the early development of AI, and in particular we highlight two important scientific branches that were initiated by applying physical concepts to study neural networks. We also discuss future directions for understanding and improving AI, and for resolving the nature of intelligence.
  • [1]
    Hopfield J J. Annual Review of Condensed Matter Physics,2013, 5:1
    [2]
    Hopfield J J. Proc. Natl. Acad. Sci. USA,1982,79(8):2554
    [3]
    黄海平. 科学,2022,74:40
    [4]
    Huang H. Front. Comput. Neurosci.,2024,18:1388166
    [5]
    Bower J M. (NIPS) NeurIPS and Neuroscience:A Personal Historical Perspective,2022
    [6]
    Ackley D H,Hinton G E,Sejnowski T J. Cognitive Science, 1985,9:147
    [7]
    Stone J V. The Artificial Intelligence Papers:Original Research Papers With Tutorial Commentaries. Sebtel Press,2024
    [8]
    Hinton G E. Neural Computation,2002,14 (8):1771
    [9]
    Wang H C et al. Nature,2023,620:47
    [10]
    Hinton G E,Salakhutdinov R R. Science,2006,313(5786):504
    [11]
    Carleo G et al. Rev. Mod. Phys.,2019,91:045002
    [12]
    黄海平. 神经网络的统计力学(英文版). 北京:高等教育出版 社,2021
    [13]
    黄海平. 现代物理知识,2024,36 (6):49
    [14]
    Goldenfeld N,Kadanoff L P. Science,1999,284:87
    [15]
    Bubeck S et al. 2023,arXiv:2303.12712
  • Related Articles

    [1]TANG Ze-Chen, DUAN Wen-Hui, XU Yong. Physics and deep learning:an introduction to the 2024 Nobel Prize in Physics[J]. PHYSICS, 2025, 54(1): 1-9. DOI: 10.7693/wl20250101
    [2]LI He, DUAN Wen-Hui, XU Yong. Deep learning and first-principles calculations[J]. PHYSICS, 2024, 53(7): 442-449. DOI: 10.7693/wl20240702
    [3]ZHANG Lin-Feng, WANG Han. Simulating the microscopic world:from the Schrödinger equation to the large atomic model[J]. PHYSICS, 2024, 53(7): 431-441. DOI: 10.7693/wl20240701
    [4]QI Xiao-Liang. Time, information and artificial intelligence[J]. PHYSICS, 2024, 53(6): 357-367. DOI: 10.7693/wl20240601
    [5]CHEN Jing. Computer overwhelmed human in handling the complexity of the game of Go[J]. PHYSICS, 2017, 46(9): 616-623. DOI: 10.7693/wl20170906
    [6]WANG Lu. The application of deep learning in high energy physics[J]. PHYSICS, 2017, 46(9): 597-605. DOI: 10.7693/wl20170904
    [7]CAI Zi. Application of machine learning methods in quantum many-body physics[J]. PHYSICS, 2017, 46(9): 590-596. DOI: 10.7693/wl20170903
    [8]TIAN Zhen, GU Jian-Qiang, HAN Jia-Guang, J. F. O' Hara, ZHANG Wei-Li. Sensing applications of terahertz subwavelength artificial structures[J]. PHYSICS, 2013, 42(12): 838-845. DOI: 10.7693/wl20131202

Catalog

    Article views (242) PDF downloads (1218) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return