• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
TANG Ze-Chen, DUAN Wen-Hui, XU Yong. Physics and deep learning:an introduction to the 2024 Nobel Prize in Physics[J]. PHYSICS, 2025, 54(1): 1-9. DOI: 10.7693/wl20250101
Citation: TANG Ze-Chen, DUAN Wen-Hui, XU Yong. Physics and deep learning:an introduction to the 2024 Nobel Prize in Physics[J]. PHYSICS, 2025, 54(1): 1-9. DOI: 10.7693/wl20250101

Physics and deep learning:an introduction to the 2024 Nobel Prize in Physics

More Information
  • Received Date: December 22, 2024
  • Available Online: January 16, 2025
  • The 2024 Nobel Prize in Physics was awarded for pioneering research on neural networks, recognizing the transformative impact of deep learning across interdisciplinary fields. Physicist John Hopfield and“Godfather of AI”Geoffrey Hinton were honored for their outstanding contributions to the development of artificial neural networks. This article, written from the perspective of physics researchers, will highlight the representative research achievements of the laureates, and explore the deep connection between physics and deep learning. The essential role of physics in advancing deep learning will be examined, and the profound impact of deep learning on the future development of physics will be envisioned, using its integration with first-principles calculations as a concrete example.
  • [1]
    LeCun Y,Bengio Y,Hinton G. Nature,2015,521:436
    [2]
    McCulloch W S,Pitts W. Bull. Math. Biophys.,1943,5:115
    [3]
    Rosenblatt F. Psycholog. Rev.,1958,65:386
    [4]
    Hubel D H,Wiesel T N. J. Physiol.,1959,148:574
    [5]
    Hopfield J J. Proc. Natl. Acad. Sci. USA,1982,79:2554
    [6]
    Ackley D H,Hinton G E,Sejnowski T J. Cogn. Sci.,1985,9:147
    [7]
    Amit D J,Gutfreund H,Sompolinsky H. Phys. Rev. A,1985,32: 1007
    [8]
    Popular Science Background. the Nobel Prize in Physics 2024. https://www.nobelprize.org/uploads/2024/11/popular-physicsprize2024-3.pdf
    [9]
    Hebb D. The Organization of Behavior. A Neuropsychological Theory. Wiley,1949
    [10]
    Amari S I. IEEE Transac. Comput.,1972,100:1197
    [11]
    Hopfield J J,Tank D W. Biol. Cybern.,1985,52:141
    [12]
    Ramsauer H,Schäfl B,Lehner J et al. 2020,arXiv:2008.02217
    [13]
    Nowlan S,Hinton G E. Evaluation of Adaptive Mixtures of Competing Experts. In:Adv. Neural Inf. Process. Syst.3,1990
    [14]
    Srivastava N,Hinton G,Krizhevsky A et al. J. Mach. Learn. Res.,2014,15:1929
    [15]
    Hinton G E,Salakhutdinov R R. Science,2006,313:504
    [16]
    Krizhevsky A,Sutskever I,Hinton G E. Adv. Neural Inf. Process. Syst.,2012,25:1106
    [17]
    Hinton G E. Neural Comput.,2002,14:1771
    [18]
    Tierney L. Ann. Statist.,1994,22:1701
    [19]
    Salakhutdinov R,Hinton G. Deep Boltzmann Machines. In:Artificial intelligence and statistics. PMLR,2009. p.448
    [20]
    Jaitly N,Hinton G. Learning a Better Representation of Speech Soundwaves using Restricted Boltzmann Machines. In:2011 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2011. p.5884
    [21]
    Carleo G,Troyer M. Science,2017,355:602
    [22]
    Silver D,Huang A,Maddison C J et al. Nature,2016,529:484
    [23]
    Jumper J,Evans R,Pritzel A et al. Nature,2021,596:583
    [24]
    Abramson J,Adler J,Dunger J et al. Nature,2024,1:
    [25]
    Udrescu S M,Tegmark M. Sci. Adv.,2020,6:eaay2631
    [26]
    Burger B,Maffettone P M,Gusev V V et al. Nature,2020,583: 237
    [27]
    Martin R M. Electronic Structure:Basic Theory and Practical Methods. Cambridge university press,2020
    [28]
    Kohn W,Sham L J. Phys. Rev.,1965,140:A1133
    [29]
    Kohn W. Phys. Rev. Lett.,1996,76:3168
    [30]
    Das S,Kanungo B,Subramanian V et al. Large-scale Materials Modeling at Quantum Accuracy:Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys. In: Proceedings of the International Conference for High Performance Computing,Networking,Storage and Analysis. 2023. p.1
    [31]
    Stocks R,Vallejo J L G,Yu F C et al. Breaking the MillionElectron and 1 EFLOP/s Barriers:Biomolecular-Scale Ab Initio Molecular Dynamics Using MP2 Potentials. In:Proceedings of the International Conference for High Performance Computing, Networking,Storage,and Analysis. 2024. p.1
    [32]
    Perdew J P,Schmidt K. Jacob’s Ladder of Density Functional Approximations for the Exchange-correlation Energy. In:AIP Conference Proceedings. American Institute of Physics,2001. p.1
    [33]
    Behler J,Parrinello M. Phys. Rev. Lett.,2007,98:146401
    [34]
    Zhang L,Han J,Wang H et al. Phys. Rev. Lett.,2018,120: 143001
    [35]
    Batzner S,Musaelian A,Sun L et al. Nat. Commun.,2022,13: 2453
    [36]
    Liao Y L,Wood B M,Das A et al. EquiformerV2:Improved Equivariant Transformer for Scaling to Higher-Degree Representations. In:the Twelfth International Conference on Learning Representations
    [37]
    Merchant A,Batzner S,Schoenholz S S et al. Nature,2023,624:80
    [38]
    Barroso-Luque L,Shuaibi M,Fu X et al. 2024 ,arXiv :2410. 12771
    [39]
    Li H,Wang Z,Zou N et al. Nat. Comput. Sci.,2022,2:367
    [40]
    Li H,Wang Z,Zou N L et al. 2021,arXiv:2104.03786
    [41]
    Xie T,Grossman J C. Phys. Rev. Lett.,2018,120:145301
    [42]
    Geiger M,Smidt T. 2022,arXiv:2207.09453
    [43]
    Gong X,Li H,Zou N et al. Nat. Commun.,2023,14:2848
    [44]
    Li H,Tang Z,Gong X et al. Nat. Comput. Sci.,2023,3:321
    [45]
    Tang Z,Li H,Lin P et al. Nat. Commun.,2024,15:8815
    [46]
    Li H,Tang Z,Fu J et al. Phys. Rev. Lett.,2024,132:096401
    [47]
    Mortazavi B. Adv. Energy Mater.,2024,2403876:
    [48]
    Unke O,Bogojeski M,Gastegger M et al. Adv. Neural Inf. Processing Syst.,2021,34:14434
    [49]
    Zhong Y,Yu H,Su M et al. npj Comput. Mater.,2023,9:182
    [50]
    Yu H,Xu Z,Qian X et al. Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian. In:International Conference on Machine Learning. PMLR,2023. p.40412
    [51]
    Wang Y,Li Y,Tang Z et al. Sci. Bull.,2024,69:30

Catalog

    Article views (658) PDF downloads (1671) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return