Citation: | TANG Ze-Chen, DUAN Wen-Hui, XU Yong. Physics and deep learning:an introduction to the 2024 Nobel Prize in Physics[J]. PHYSICS, 2025, 54(1): 1-9. DOI: 10.7693/wl20250101 |
[1] |
LeCun Y,Bengio Y,Hinton G. Nature,2015,521:436
|
[2] |
McCulloch W S,Pitts W. Bull. Math. Biophys.,1943,5:115
|
[3] |
Rosenblatt F. Psycholog. Rev.,1958,65:386
|
[4] |
Hubel D H,Wiesel T N. J. Physiol.,1959,148:574
|
[5] |
Hopfield J J. Proc. Natl. Acad. Sci. USA,1982,79:2554
|
[6] |
Ackley D H,Hinton G E,Sejnowski T J. Cogn. Sci.,1985,9:147
|
[7] |
Amit D J,Gutfreund H,Sompolinsky H. Phys. Rev. A,1985,32: 1007
|
[8] |
Popular Science Background. the Nobel Prize in Physics 2024. https://www.nobelprize.org/uploads/2024/11/popular-physicsprize2024-3.pdf
|
[9] |
Hebb D. The Organization of Behavior. A Neuropsychological Theory. Wiley,1949
|
[10] |
Amari S I. IEEE Transac. Comput.,1972,100:1197
|
[11] |
Hopfield J J,Tank D W. Biol. Cybern.,1985,52:141
|
[12] |
Ramsauer H,Schäfl B,Lehner J et al. 2020,arXiv:2008.02217
|
[13] |
Nowlan S,Hinton G E. Evaluation of Adaptive Mixtures of Competing Experts. In:Adv. Neural Inf. Process. Syst.3,1990
|
[14] |
Srivastava N,Hinton G,Krizhevsky A et al. J. Mach. Learn. Res.,2014,15:1929
|
[15] |
Hinton G E,Salakhutdinov R R. Science,2006,313:504
|
[16] |
Krizhevsky A,Sutskever I,Hinton G E. Adv. Neural Inf. Process. Syst.,2012,25:1106
|
[17] |
Hinton G E. Neural Comput.,2002,14:1771
|
[18] |
Tierney L. Ann. Statist.,1994,22:1701
|
[19] |
Salakhutdinov R,Hinton G. Deep Boltzmann Machines. In:Artificial intelligence and statistics. PMLR,2009. p.448
|
[20] |
Jaitly N,Hinton G. Learning a Better Representation of Speech Soundwaves using Restricted Boltzmann Machines. In:2011 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). IEEE,2011. p.5884
|
[21] |
Carleo G,Troyer M. Science,2017,355:602
|
[22] |
Silver D,Huang A,Maddison C J et al. Nature,2016,529:484
|
[23] |
Jumper J,Evans R,Pritzel A et al. Nature,2021,596:583
|
[24] |
Abramson J,Adler J,Dunger J et al. Nature,2024,1:
|
[25] |
Udrescu S M,Tegmark M. Sci. Adv.,2020,6:eaay2631
|
[26] |
Burger B,Maffettone P M,Gusev V V et al. Nature,2020,583: 237
|
[27] |
Martin R M. Electronic Structure:Basic Theory and Practical Methods. Cambridge university press,2020
|
[28] |
Kohn W,Sham L J. Phys. Rev.,1965,140:A1133
|
[29] |
Kohn W. Phys. Rev. Lett.,1996,76:3168
|
[30] |
Das S,Kanungo B,Subramanian V et al. Large-scale Materials Modeling at Quantum Accuracy:Ab Initio Simulations of Quasicrystals and Interacting Extended Defects in Metallic Alloys. In: Proceedings of the International Conference for High Performance Computing,Networking,Storage and Analysis. 2023. p.1
|
[31] |
Stocks R,Vallejo J L G,Yu F C et al. Breaking the MillionElectron and 1 EFLOP/s Barriers:Biomolecular-Scale Ab Initio Molecular Dynamics Using MP2 Potentials. In:Proceedings of the International Conference for High Performance Computing, Networking,Storage,and Analysis. 2024. p.1
|
[32] |
Perdew J P,Schmidt K. Jacob’s Ladder of Density Functional Approximations for the Exchange-correlation Energy. In:AIP Conference Proceedings. American Institute of Physics,2001. p.1
|
[33] |
Behler J,Parrinello M. Phys. Rev. Lett.,2007,98:146401
|
[34] |
Zhang L,Han J,Wang H et al. Phys. Rev. Lett.,2018,120: 143001
|
[35] |
Batzner S,Musaelian A,Sun L et al. Nat. Commun.,2022,13: 2453
|
[36] |
Liao Y L,Wood B M,Das A et al. EquiformerV2:Improved Equivariant Transformer for Scaling to Higher-Degree Representations. In:the Twelfth International Conference on Learning Representations
|
[37] |
Merchant A,Batzner S,Schoenholz S S et al. Nature,2023,624:80
|
[38] |
Barroso-Luque L,Shuaibi M,Fu X et al. 2024 ,arXiv :2410. 12771
|
[39] |
Li H,Wang Z,Zou N et al. Nat. Comput. Sci.,2022,2:367
|
[40] |
Li H,Wang Z,Zou N L et al. 2021,arXiv:2104.03786
|
[41] |
Xie T,Grossman J C. Phys. Rev. Lett.,2018,120:145301
|
[42] |
Geiger M,Smidt T. 2022,arXiv:2207.09453
|
[43] |
Gong X,Li H,Zou N et al. Nat. Commun.,2023,14:2848
|
[44] |
Li H,Tang Z,Gong X et al. Nat. Comput. Sci.,2023,3:321
|
[45] |
Tang Z,Li H,Lin P et al. Nat. Commun.,2024,15:8815
|
[46] |
Li H,Tang Z,Fu J et al. Phys. Rev. Lett.,2024,132:096401
|
[47] |
Mortazavi B. Adv. Energy Mater.,2024,2403876:
|
[48] |
Unke O,Bogojeski M,Gastegger M et al. Adv. Neural Inf. Processing Syst.,2021,34:14434
|
[49] |
Zhong Y,Yu H,Su M et al. npj Comput. Mater.,2023,9:182
|
[50] |
Yu H,Xu Z,Qian X et al. Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian. In:International Conference on Machine Learning. PMLR,2023. p.40412
|
[51] |
Wang Y,Li Y,Tang Z et al. Sci. Bull.,2024,69:30
|