Citation: | LI He, DUAN Wen-Hui, XU Yong. Deep learning and first-principles calculations[J]. PHYSICS, 2024, 53(7): 442-449. DOI: 10.7693/wl20240702 |
[1] |
Martin R M. Electronic Structure:Basic Theory and Practical Methods. Cambridge University Press,2020
|
[2] |
Jones R O. Rev. Mod. Phys.,2015,87:897
|
[3] |
Hohenberg P,Kohn W. Phys. Rev. B,1964,136:B864
|
[4] |
Kohn W,Sham L J. Phys. Rev.,1965,140:A1133
|
[5] |
Jain A,Ong S P,Hautier G et al. APL Mater.,2013,1:011002
|
[6] |
Elstner M,Porezag D,Jungnickel G et al. Phys. Rev. B,1998,58: 7260
|
[7] |
Goedecker S. Rev. Mod. Phys.,1999,71:1085
|
[8] |
Butler K T,Davies D W,Cartwright H et al. Nature,2018,559:547
|
[9] |
Carleo G,Cirac I,Cranmer K et al. Rev. Mod. Phys.,2019,91: 045002
|
[10] |
Schmidt J,Marques M R G,Botti S et al. npj Comput. Mater., 2019,5:83
|
[11] |
Huang B,von Rudorff G F,von Lilienfeld O A. Science,2023, 381:170
|
[12] |
Li H,Xu Y,Duan W. MGE Adv.,2023,1:e16
|
[13] |
LeCun Y,Bengio Y,Hinton G. Nature,2015,521:436
|
[14] |
Rumelhart D E,Hinton G E,Williams R J. Nature,1986,323:533
|
[15] |
Bronstein M M,Bruna J,LeCun Y et al. IEEE Signal Process. Mag.,2017,34:18
|
[16] |
Gilmer J,Schoenholz S S,Riley P F et al. Neural Message Passing for Quantum Chemistry. In:Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research:PMLR,2017. pp.1263—1272
|
[17] |
Vaswani A,Shazeer N,Parmar N et al. Attention is All You Need. In:Advances in Neural Information Processing Systems, 2017,30:6000
|
[18] |
Unke O T,Chmiela S,Sauceda H E et al. Chem. Rev.,2021, 121:10142
|
[19] |
Kohn W. Phys. Rev. Lett.,1996,76:3168
|
[20] |
Prodan E,Kohn W. Proc. Natl. Acad. Sci. USA,2005,102:11635
|
[21] |
Li H,Wang Z,Zou N et al. Nat. Comput. Sci.,2022,2:367
|
[22] |
Thomas N,Smidt T,Kearnes S et al. 2018,arXiv:1802.08219
|
[23] |
Gong X,Li H,Zou N et al. Nat. Commun.,2023,14:2848
|
[24] |
Wang Y,Li H,Tang Z et al. 2024,arXiv:2401.17015
|
[25] |
Passaro S,Zitnick C L. Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs. In:Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research:PMLR,2023. pp.27420—27438
|
[26] |
Li H,Tang Z,Gong X et al. Nat. Comput. Sci.,2023,3:321
|
[27] |
Yuan Z,Xu Z,Li H et al. Quantum Front.,2024,3:8
|
[28] |
Schütt K T,Gastegger M,Tkatchenko A et al. Nat. Commun., 2019,10(1):5024
|
[29] |
Gu Q,Zhang L,Feng J. Sci. Bull.,2022,67(1):29
|
[30] |
Zhong Y, Yu H, Su M et al. npj Comput. Mater.,2023,9(1):182
|
[31] |
Yu H,Xu Z,Qian X et al. In:Proceedings of the 40th International Conference on Machine Learning. Proceedings of Machine Learning Research:PMLR,2023. p. 40424
|
[32] |
Tang Z,Li H,Lin P et al. 2023,arXiv:2302.08221
|
[33] |
Li Y,Tang Z,Chen Z et al. 2024,arXiv:2403.11287
|
[34] |
Bao T,Xu R,Li H et al. 2024,arXiv:2404.06449
|
[35] |
Cao Y,Fatemi V,Demir A et al. Nature,2018,556:80
|
[36] |
Cao Y,Fatemi V,Fang S et al. Nature,2018,556:43
|
[37] |
Lucignano P,Alfè D,Cataudella V et al. Phys. Rev. B,2019,99: 195419
|
[38] |
Wang Y,Li Y,Tang Z et al. Sci. Bull.,2024 DOI: 10.1016/j. scib.2024.06.011
|