• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YIN Zhi-Gang, ZHANG Xing-Wang, PAN Xiu-Hong. Crystal growth from melts: materials science program in the SJ-10——recoverable scientific experiment satellite[J]. PHYSICS, 2016, 45(4): 213-218. DOI: 10.7693/wl20160401
Citation: YIN Zhi-Gang, ZHANG Xing-Wang, PAN Xiu-Hong. Crystal growth from melts: materials science program in the SJ-10——recoverable scientific experiment satellite[J]. PHYSICS, 2016, 45(4): 213-218. DOI: 10.7693/wl20160401

Crystal growth from melts: materials science program in the SJ-10——recoverable scientific experiment satellite

More Information
  • Received Date: March 22, 2016
  • Published Date: April 11, 2016
  • The absence of gravity-dependent phenomena in microgravity allows an in-depth understanding of fundamental events that are normally obscured on earth. Of particular interest is that the low-gravity environment aboard the space provides a unique platform to synthesize alloys with homogeneous composition distributions and low defect concentrations, due to the much reduced buoyancy-driven convection and the easy realization of detached growth. Motivated by these facts, the materials science program in the SJ-10 recoverable scientific experiment satellite mainly focuses on the following issues: (i) the growth of ternary compound semiconductors with uniform composition and low defect density, (ii) solidification, defect control and interfacial phenomena of metal alloys, and (iii) the wettability of molten metal and preparation of metal matrix composites in space. The series of scientific experiments will be carried out successively in the same multiple materials processing furnace with precise controls on the sample position and the temperature gradient. We hope our program not only provides new sights into the crystal growth mechanism, but also guides the terrestrial crystal preparations.
  • [1]
    胡文瑞. 中国科学院院刊,1990,2:95
    [2]
    Witt A F et al. J. Electrochem. Soc.,1978,125:1832
    [3]
    陈万春,宋友庭. 科技导报,2012,30 (02):42
    [4]
    Lin LY et al. J. Cryst. Growth,1998,191:586
    [5]
    Yu J D et al. Microgravity Sci. Technol.,2016,DOI:10.1007/s12217-016-9493-x
    [6]
    Benz KW,Dold P. J. Cryst. Growth,2002,237-239:1638
    [7]
    Duffar T et al. Cryst. Res. Technol.,1999,34:457
    [8]
    Croll A,Volz M P. MRS Bull.,2009,34:245
    [9]
    Duffar T et al. J. Cryst. Growth,1990,100:171
    [10]
    Chen N F et al. Mater. Sci. Eng. B,2000,75:134
    [11]
    Chen N F et al. Appl. Phys. Lett.,2001,78:478
    [12]
    Peng C T et al. Appl. Phys. Lett.,2006,88:242108
    [13]
    Kurtz S R et al. Phys. Rev. B,1992,46:1909(R)
    [14]
    Dietl T. Nat. Meter.,2010,9:965
    [15]
    Dietl T et al. Science,2000,287:1019
    [16]
    Grey A X et al. Nat. Meter.,2012,11:957
    [17]
    Konig F. Cryst Res. Technol.,1998,33:219
    [18]
    Zhou Y F et al. J. Cryst. Growth,2010,312:775
    [19]
    Gu P J et al. Met.Mater. Trans. A,1997,28:1533
    [20]
    Kaiser N et al. J. Cryst. Growth,2001,231:448
    [21]
    Tanabe Y et al. J. Jpn. Soc. Microgravity Appl.,1996,13:234
  • Related Articles

    [1]WANG Meng. Discovery of high-Tc superconductivity in a nickelate[J]. PHYSICS, 2023, 52(10): 663-671. DOI: 10.7693/wl20231001
    [2]LI Qing, WEN Hai-Hu. Nickelate superconductors——important inspiration for unconventional high-temperature superconductivity[J]. PHYSICS, 2022, 51(9): 633-643. DOI: 10.7693/wl20220905
    [3]WO Hong-Liang, WANG Qi-Si, SHEN Yao, ZHAO Jun. Neutron scattering studies on unconventional superconductors[J]. PHYSICS, 2019, 48(12): 790-799. DOI: 10.7693/wl20191203
    [4]XIAO Rui-Chun, LU Wen-Jian, SUN Yu-Ping. Two-dimensional superconductors[J]. PHYSICS, 2018, 47(6): 345-353. DOI: 10.7693/wl20180601
    [5]DU Zeng-Yi, YANG Huan, WEN Hai-Hu. Unified picture for the order parameter and mechanism of iron based superconductors[J]. PHYSICS, 2018, 47(1): 1-14. DOI: 10.7693/wl20180101
    [6]LUO Hui-Qian. Iron-based superconductivity,then and now[J]. PHYSICS, 2014, 43(07): 430-438. DOI: 10.7693/wl20140701
    [7]Neutron scattering study on iron based high-temperature superconducting materials[J]. PHYSICS, 2011, 40(08): 535-540.
    [8]Angle-resolved photoemission spectroscopy studies on new iron-based superconductors[J]. PHYSICS, 2011, 40(08): 523-526.
    [9]Pseudogap and superconducting phase fluctuations in high-Tc superconductors[J]. PHYSICS, 2006, 35(05): 432-437.
    [10]Structural properties and superconductivity of Na0.3CoO2·1.3H2O superconductors[J]. PHYSICS, 2003, 32(10).
  • Cited by

    Periodical cited type(2)

    1. 罗裕波. 科学研究融入固体物理教学的探索与实践. 大学物理. 2024(01): 22-25 .
    2. 席利成,肖琪. 热电织物研究进展. 山东纺织科技. 2023(05): 47-50 .

    Other cited types(10)

Catalog

    Article views (53) PDF downloads (702) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return