• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Qing, WEN Hai-Hu. Nickelate superconductors——important inspiration for unconventional high-temperature superconductivity[J]. PHYSICS, 2022, 51(9): 633-643. DOI: 10.7693/wl20220905
Citation: LI Qing, WEN Hai-Hu. Nickelate superconductors——important inspiration for unconventional high-temperature superconductivity[J]. PHYSICS, 2022, 51(9): 633-643. DOI: 10.7693/wl20220905

Nickelate superconductors——important inspiration for unconventional high-temperature superconductivity

More Information
  • Received Date: August 07, 2022
  • Available Online: October 24, 2022
  • In recent years, superconductivity in nickelates has attracted much attention because the infinite layer nickelates RNiO2 (R represents rare-earth element) have the same crystal structure and 3d9 outer-shell electronic orbital as CaCuO2, a parent phase of high-temperature cuprate superconductors. Therefore, further study and analysis of nickelates can help us understand the physical origin of unconventional high-temperature superconductivity. This paper will review the current development of nickelate superconductors, mainly covering the discovery of superconductivity in nickelate thin films, the crystal and electronic structure of the 112 phase, the optimization of thin film growth conditions, recent research progress and phase diagram. Finally, a brief summary and future perspectives are presented.
  • [1]
    Bednorz J G, Müller K A. Z. Phys. B: Condens. Matter., 1986, 64: 189
    [2]
    Schilling A, Cantoni M, Guo J D et al. Nature, 1993, 363: 56
    [3]
    Gao L, Xue Y Y, Chen F et al. Phys. Rev. B, 1994, 50: 4260
    [4]
    Bardeen J, Cooper L N, Schrieffer J R. Phys. Rev., 1957, 108: 1175
    [5]
    Kamihara Y, Watanabe T, Hirano M et al. J. Am. Chem. Soc., 2008, 130: 3296
    [6]
    Anderson P W. Science, 2007, 316: 1705
    [7]
    Lee P A, Nagaosa N, Wen X G. Rev. Mod. Phys., 2006, 78: 17
    [8]
    Vaknin D, Sinha S K, Moncton D E et al. Phys. Rev. Lett., 1987, 58: 2802
    [9]
    Anisimov V I, Bukhvalov D, Rice T M. Phys. Rev. B, 1999, 59: 7901
    [10]
    Lee K W, Pickett W E. Phys. Rev. B, 2004, 70: 165109
    [11]
    Hayward M A, Green M A, Rosseinsky M J et al. J. Am. Chem. Soc., 1999, 121: 8843
    [12]
    Hayward M A, Rosseinsky M J. Solid State Sci., 2003, 5: 839
    [13]
    Azuma M, Hiroi Z, Takano M et al. Nature, 1992, 356: 775
    [14]
    Crespin M, Levitz P, Gatineau L. J. Chem. Soc., Faraday Trans. 2, 1983, 79: 1181
    [15]
    Ikeda A, Manabe T, Naito M. Phys. C, 2013, 495: 134
    [16]
    Chaloupka J, Khaliullin G. Phys. Rev. Lett., 2008, 100: 016404
    [17]
    Poltavets V V, Lokshin K A, Nevidomskyy A H et al. Phys. Rev. Lett., 2010, 104: 206403
    [18]
    Zhang J, Botana A S, Freeland J W et al. Nat. Phys., 2017, 13: 864
    [19]
    Li D, Lee K, Wang B Y et al. Nature, 2019, 572: 624
    [20]
    Norman M R. Physics, 2020, 13: 85
    [21]
    Ji Y, Liu J, Li L et al. J. Appl. Phys., 2021, 130: 060901
    [22]
    Botana A S, Bernardini F, Cano A. J. Exp. Theor. Phys., 2021, 132(4): 618
    [23]
    Zhang J, Tao X. CrystEngComm, 2021, 23: 3249
    [24]
    李丹枫. 中国科学: 物理学力学天文学, 2021, 51(4): 047405
    [25]
    Nomura Y, Arita R. Rep. Prog. Phys., 2022, 85: 052501
    [26]
    Gu Q, Wen H H. The Innovation, 2022, 3(1): 100202
    [27]
    Alonso J A,Martínez-Lope M J,Hidalgo M A. J. Solid State Chem., 1995, 116: 146
    [28]
    Torrance J B, Lacorre P, Nazzal A I. Phys. Rev. B, 1992, 45: 8209
    [29]
    Catalano S, Gibert M, Fowlie J et al. Rep. Prog. Phys., 2018, 81: 046501
    [30]
    Yamamoto T, Kageyama H. Chem. Lett., 2013, 42: 946
    [31]
    Kawai M, Inoue S, Mizumaki M et al. Appl. Phys. Lett., 2009, 94: 082102
    [32]
    Xiang Y, Li Q, Li Y et al. Chin. Phys. Lett., 2021, 38: 047401
    [33]
    Wang B Y, Li D, Goodge B H et al. Nat. Phys., 2021, 17: 473
    [34]
    Chow L E, Yip K Y, Pierre M et al. 2022, arxiv: 2204.12606
    [35]
    Zeng S W, Yin X M, Li C J et al. Nat. Commun., 2022, 13: 743
    [36]
    Hirsch J E, Marsiglio F. Physica C: Supercond. Appl., 2019, 566: 1353534
    [37]
    Botana A S, Norman M R. Phys. Rev. X, 2020, 10: 011024
    [38]
    Hepting M, Li D, Jia C J et al. Nat. Mater., 2020, 19: 381
    [39]
    Wu X, Sante D D, Schwemmer T et al. Phys. Rev. B, 2020, 101: 060504
    [40]
    Zhang G M, Yang Y F, Zhang F C. Phys. Rev. B, 2020, 101: 020501
    [41]
    Gu Y, Zhu S, Wang X et al. Commun. Phys., 2020, 3: 84
    [42]
    Nomura Y, Hirayama M, Tadano T et al. Phys. Rev. B, 2019, 100: 205138
    [43]
    Liu Z, Ren Z, Zhu W et al. npj Quantum Mater., 2020, 5: 31
    [44]
    Zhou T, Gao Y, Wang Z. Sci. China: Phys. Mech. Astron., 2020, 63: 287412
    [45]
    Karp J, Botana A S, Norman M R et al. Phys. Rev. X, 2020, 10: 021061
    [46]
    Sakakibara H, Usui H, Suzuki K et al. Phys. Rev. Lett., 2020, 125: 077003
    [47]
    Zhang H, Jin L, Wang S et al. Phys. Rev. Res., 2020, 2: 013214
    [48]
    Wan X, Ivanov V, Resta G et al. Phys. Rev. B, 2021, 103: 075123
    [49]
    Choi M Y,Lee K W,Pickett W E. Phys. Rev. B,2020,101: 020503(R)
    [50]
    He R, Jiang P, Lu Y et al. Phys. Rev. B, 2020, 102: 035118
    [51]
    Li Q, He C, Si J et al. Commun. Mater., 2020, 1: 16
    [52]
    Wang B X,Zheng H,Krivyakina E et al. Phys. Rev. Mater., 2020, 4: 084409
    [53]
    Zhou X R, Feng Z X, Qin P X et al. Rare Metals, 2020, 39(4): 368
    [54]
    Bernardini F, Cano A. J. Phys. Mater., 2020, 3: 03LT01
    [55]
    Geisler B, Pentcheva R. Phys. Rev. B, 2020, 102: 020502(R)
    [56]
    Ding X, Shen S, Leng H et al. Sci. China: Phys. Mech. Astron., 2022, 65: 267411
    [57]
    Li Q, He C, Zhu X et al. Sci. China: Phys. Mech. Astron., 2021, 64: 227411
    [58]
    LaBollita H, Botana A S. Phys. Rev. B, 2021, 104: 035148
    [59]
    Gu Q, Li Y, Wan S et al. Nat. Commun., 2020, 11: 6027
    [60]
    Zeng S,Tang C S,Yin X et al. Phys. Rev. Lett.,2020,125: 147003
    [61]
    Gao Q, Zhao Y, Zhou X J et al. Chin. Phys. Lett., 2021, 38(7): 077401
    [62]
    Zhou X R, Feng Z X, Qin P X et al. Rare Met., 2021, 40(10): 2847
    [63]
    Li Y, Sun W, Yang J et al. Front. Phys., 2021, 9: 717534
    [64]
    Lechermann F. Phys. Rev. B, 2020, 101: 081110(R)
    [65]
    Keimer B, Kivelson S A, Norman M R et al. Nature, 2015, 518: 179
    [66]
    Osada M, Wang B Y, Goodge B H et al. Adv. Mater., 2021, 33: 2104083
    [67]
    Zeng S, Li C, Chow L et al. Sci. Adv., 2022, 8: eabl9927
    [68]
    Lee K, Goodge B H, Li D et al. APL Mater., 2020, 8: 041107
    [69]
    Preziosi D, Sander A, Barthélémy A et al. AIP Adv., 2017, 7: 015210
    [70]
    Breckenfeld E, Chen Z, Damodaran A R et al. ACS Appl. Mater. Interfaces, 2014, 6: 22436
    [71]
    Li D, Wang B Y, Lee K et al. Phys. Rev. Lett., 2020, 125: 027001
    [72]
    Goodge B H,Li D,Lee K et al. PNAS,2021,118(2): e2007683118
    [73]
    Rossi M, Lu H, Nag A et al. Phys. Rev. B, 2021, 104: L220505
    [74]
    Lu H, Rossi M, Nag A et al. Science, 2021, 373: 213
    [75]
    Cui Y, Li C, Li Q et al. Chin. Phys. Lett., 2021, 38(6): 067401
    [76]
    Zhao D,Zhou Y B,Fu Y et al. Phys. Rev. Lett.,2021,126: 197001
    [77]
    Lin H, Gawryluk D J, Klein Y M et al. New J. Phys., 2022, 24: 013022
    [78]
    He C, Ming X, Li Q et al. J. Phys.: Condens. Matter, 2021, 33(26): 265701
    [79]
    Rice T M, Yang K Y, Zhang F C. Rep. Prog. Phys., 2012, 75: 016502
    [80]
    Wang Z, Zhang G M, Yang Y et al. Phys. Rev. B, 2020, 102: 220501(R)
    [81]
    Wu X, Jiang K, Sante D D et al. 2020, arxiv: 2008.06009v2
    [82]
    Iavarone M, Karapetrov G, Koshelev A E et al. Phys. Rev. Lett., 2002, 89: 187002
    [83]
    Hsu Y T, Wang B Y, Berben M et al. Phys. Rev. Res., 2021, 3: L042015
    [84]
    Lee K, Wang B Y, Osada M et al. 2022, arXiv: 2203. 02580
    [85]
    Osada M, Wang B Y, Goodge B H et al. Nano Lett., 2020, 20: 5735
    [86]
    Osada M, Wang B Y, Lee K et al. Phys. Rev. Mater., 2020, 4: 121801(R)
    [87]
    Si L, Xiao W, Kaufmann J et al. Phys. Rev. Lett., 2020, 124: 166402
    [88]
    Sun W, Li Y, Liu R et al. 2022, arxiv: 2204.13264
    [89]
    Takagi H, Ido T, Ishibashi S et al. Phys. Rev. B, 1989, 40: 2254
    [90]
    Ren X, Gao Q, Zhao Y et al. 2021, arXiv: 2109.05761
    [91]
    Pan G A,Ferenc S D, LaBollita H. Nat. Mater., 2022, 21: 160
    [92]
    Wang N N, Yang M W, Chen K Y et al. Nat. Commun., 2022, 13: 4367
    [93]
    Wang B Y, Wang T C, Hsu Y T et al. 2022, arxiv: 2205.15355
    [94]
    Chen Z, Liu Y, Zhang H et al. Science, 2021, 372: 721
  • Related Articles

    [1]HOU Mei-Ying. Clustering behavior in granular gases[J]. PHYSICS, 2016, 45(4): 230-233. DOI: 10.7693/wl20160404
    [2]KONG Ling-Hai, XU Hai-Bo, HU Xiao-Mian. Radiographic measurements based on synchrotron radiation for studying the detonation of condensed high explosives[J]. PHYSICS, 2015, 44(07): 440-445. DOI: 10.7693/wl20150703
    [3]Coherent atom-trimer conversion in a repulsive Bose-Einstein condensate[J]. PHYSICS, 2009, 38(01): 30-32.
    [4]Brief introduction to Bose-Einstein condensation with an entangled order parameter[J]. PHYSICS, 2007, 36(01): 15-16.
    [5]Exotic vortex lattice structure in Bose-Einstein condensates with dipolar interactions[J]. PHYSICS, 2006, 35(07): 553-555.
    [6]Nanojets produced by coated clusters[J]. PHYSICS, 2006, 35(01): 7-9.
    [7]SPIN AND MAGNETISM OF BOSE-EINSTEIN CONDENSATES IN AN OPTICAL LATTICE[J]. PHYSICS, 2003, 32(02).
    [8]Realization of bose-einstein condensation in siom of chinese academy of sciences[J]. PHYSICS, 2002, 31(08).
    [9]The 2001 nobel prize for physics[J]. PHYSICS, 2002, 31(05).
    [10]Superfluidity in bose-einstein condensates[J]. PHYSICS, 2002, 31(01).

Catalog

    Article views (773) PDF downloads (3008) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return