Multiferroic heterojunctions:1+1≠ 2
(1 Key Laboratory of Polar Materials and Devices,Ministry of Education,East China Normal University,Shanghai 200241,China)
(2 Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University,Beijing 100084,China)
More Information
Received Date:
October 28, 2013
Published Date:
February 11, 2014
Abstract
Multiferroicity or magnetoelectric coupling that occurs in composite materials is realized through interfaces of the heterostructures. It is essentially a so-called emergent phenomenon, which is not exhibited in either of the heterostructure constituents alone. This represents a kind of sudden leap process in the evolution from simple to complex material systems, i.e. 1+1≠2. This paper focuses on recent studies of multiferroic heterojunctions, including interface magnetoelectric effects, multiferroic tunnel junctions, and electric-field control of magnetism based on heterostructures.These achievements suggest that heterostructures might represent a breakthrough for practical applications utilizing multiferroicity.
Related Articles
[1] LIU Hai-Guang. Making molecular movies with X-ray free electron lasers [J]. PHYSICS, 2021, 50(9): 620-629. DOI: 10.7693/wl20210906
[2] TAI Ren-Zhong. X-ray physics [J]. PHYSICS, 2021, 50(8): 501-511. DOI: 10.7693/wl20210802
[3] ZHANG Wen-Kai, KONG Qing-Yu, WENG Tsu-Chien. Applications of femtosecond X-ray techniques in chemistry and energy materials science [J]. PHYSICS, 2018, 47(8): 504-514. DOI: 10.7693/wl20180803
[4] SUN Zhi-Bin, FAN Jia-Dong, JIANG Huai-Dong. Single particle imaging with X-ray free electron lasers [J]. PHYSICS, 2018, 47(8): 491-502. DOI: 10.7693/wl20180802
[5] HE Jian-Hua, XU Chun-Yan. Application of X-ray free electron laser crystallography in structural biology [J]. PHYSICS, 2018, 47(7): 437-445. DOI: 10.7693/wl20180704
[6] Recent inertial confinement fusion experiments and diagnostic techniques on the shenguang laser facility [J]. PHYSICS, 2010, 39(08): 531-542.
[7] Applications of synchrotron radiation-based techniques in studying the structure and properties of disordered alloys [J]. PHYSICS, 2009, 38(07): 489-495.
[8] Switching effect of spontaneous emission of polarized atoms in two-dimensional photonic crystals [J]. PHYSICS, 2006, 35(10): 804-806.
[9] The change in microstructure of plant seeds induced by low energy ion implantation [J]. PHYSICS, 2002, 31(09).
[10] Characteristics of the decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps [J]. PHYSICS, 2002, 31(08).
Cited by
Periodical cited type(18)
1.
应梓剑,陈建波,徐金江,于谦,何璇,赵雪燕,朱春华,黄石亮,杨希,李诗纯. 面向含能材料化学领域的先进分析表征技术发展与展望. 含能材料. 2025(01): 82-101 .
2.
何煦,孟立民,马云灿,林鹤,李军,叶雁. 高重复频率飞秒激光高效加工硬X射线复合折射透镜. 中国激光. 2024(16): 295-303 .
3.
商琨琳,李正恒,鞠旭东,周悦,怀平,刘志. 高帧频面探测器分布式数据获取软件研究. 核技术. 2024(10): 109-117 .
4.
于春蕾,陈广花,丁建国,李明,肖庆雯,阎映炳. SHINE加速器快联锁系统设计与开发. 核技术. 2024(12): 27-35 .
5.
张少军,郭智,成加皿,王勇,陈家华,刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报. 2023(10): 262-272 .
6.
尹亮,曾孟麒,尹聪聪,怀平. SHINE束线站定时系统束团编号的数据采集. 核技术. 2023(06): 3-9 .
7.
曾孟麒,尹亮,尹聪聪,怀平. 基于EPICS的SHINE束线站定时设备控制系统. 核技术. 2023(07): 25-33 .
8.
戴一帆,彭小强,薛帅,蒋庄德. 高性能光学制造. 机械工程学报. 2023(21): 1-14 .
9.
刘欣慰,刘海广,张文凯. X射线自由电子激光及其在超快结构动力学研究中的应用. 中国科学:物理学 力学 天文学. 2022(07): 191-214 .
10.
王雨芹. X射线自由电子激光装置. 科学技术创新. 2022(30): 30-34 .
11.
周逸媚,冷用斌,陈健,曹珊珊,许兴懿,赖龙伟. 基于腔式探头的束团到达时间测量算法优化. 原子能科学技术. 2022(10): 2104-2112 .
12.
王东兴,朱燕燕,李瑞,胡志敏. 磁调制DCCT调制噪声及测量方法研究. 原子能科学技术. 2021(01): 178-184 .
13.
王东兴,朱燕燕,周力任,李瑞,武万锋,胡志敏. 磁调制DCCT温漂相关因素灰色关联分析. 强激光与粒子束. 2021(03): 74-81 .
14.
Jiawei Yan,Nanshun Huang,Haixiao Deng,Bo Liu,Dong Wang,Zhentang Zhao. First observation of laser–beam interaction in a dipole magnet. Advanced Photonics. 2021(04): 51-56 .
15.
邰仁忠. X射线物理学. 物理. 2021(08): 501-511 .
本站查看
16.
赵晨行,卢启鹏,宋源,龚学鹏,王依,徐彬豪. 自由电子激光光束线反射镜无应力夹持设计与分析. 中国光学. 2020(04): 787-794 .
17.
李鹏,黎明,吴岱,周征,唐淳. 我国自由电子激光技术发展战略研究. 中国工程科学. 2020(03): 35-41 .
18.
孙洋,张未卿,杨学明. “大连相干光源”为化学反应中的分子“拍电影”. 科技导报. 2019(21): 26-31 .
Other cited types(22)