Citation: | Metamaterials for analog optical computing[J]. PHYSICS, 2024, 53(5): 339-339. |
[1] | CHEN Huan-Yang, HAN Lin-Kang, ZHU Shan, ZHANG Yu. Water wave metamaterials[J]. PHYSICS, 2024, 53(11): 751-760. DOI: 10.7693/wl20241103 |
[2] | LI Feng, TANG Zheng, MA Fang-Yuan, ZHOU Di. From soft matter to topological mechanical metamaterials[J]. PHYSICS, 2024, 53(10): 673-682. DOI: 10.7693/wl20241002 |
[3] | CHEN Huan-Yang, DUAN Qi-Lin, WU Rui-Xin, MA Hong-Ru. Electromagnetic superscattering and invisible gateways[J]. PHYSICS, 2022, 51(12): 845-852. DOI: 10.7693/wl20221204 |
[4] | LI Zhan-Cheng, CHENG Hua, CHEN Shu-Qi. Artificial optical nanostructures[J]. PHYSICS, 2019, 48(6): 357-366. DOI: 10.7693/wl20190602 |
[5] | TAN Wei, CHEN Hong. Photonic topological states in metamaterials[J]. PHYSICS, 2017, 46(1): 29-38. DOI: 10.7693/wl20170104 |
[6] | SHEN Xiang-Ying, HUANG Ji-Ping. Research progress in thermal metamaterials[J]. PHYSICS, 2013, 42(03): 170-180. DOI: 10.7693/wl20130302 |
[7] | Multipartite entangled optical fields with continuous variables and their applications in quantum computation[J]. PHYSICS, 2010, 39(11): 746-752. |
[8] | A typical type of high-performance computation: earth system modeling[J]. PHYSICS, 2009, 38(08): 569-574. |
[9] | Scientific computing aplication codes[J]. PHYSICS, 2009, 38(08): 552-558. |
[10] | Forefront of computational physics and its intercross with computational technology[J]. PHYSICS, 2002, 31(07). |