Silicon reconstructed surfaces and phase transitions
-
-
Abstract
We present a brief report about our research on silicon reconstructed surfaces and phase transitions. Recent experiments on the Si (111) (7×7)-(1×1) phase transition showed that when the temperature is raised above the critical temperature, a 7×7 island decays to zero at a constant area decay rate which increases with the size of the initial area. Based on an analysis of the experimental results we propose a two-speed phase-field model to explain this important but puzzling phenomenon. The key point of our model is that the essential 7×7 structures change fast during the phase transition while erasure of the stacking faults takes substantially more time. Our model satisfactorily explains the experimental phenomena, which shows that the model captures the main physics and that this phase-field method is a good approach for studying semiconductor surface phase transitions.
-
-