• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LYU Bo-Sai, LOU Shuo, SHEN Pei-Yue, SHI Zhi-Wen. Graphene nanoribbons for next-generation high-performance electronics[J]. PHYSICS, 2024, 53(10): 683-690. DOI: 10.7693/wl20241003
Citation: LYU Bo-Sai, LOU Shuo, SHEN Pei-Yue, SHI Zhi-Wen. Graphene nanoribbons for next-generation high-performance electronics[J]. PHYSICS, 2024, 53(10): 683-690. DOI: 10.7693/wl20241003

Graphene nanoribbons for next-generation high-performance electronics

More Information
  • Received Date: June 19, 2024
  • Published Date: October 14, 2024
  • Graphene nanoribbons possess a tunable bandgap and high carrier mobility, making them an ideal candidate for future high-performance nanoelectronic devices. However, the preparation of high-quality nanoribbons suitable for electronic applications has been a significant challenge. This article focuses on their nanoparticle-catalyzed fabrication and the use of this technique in growing high-quality nanoribbons embedded within hexagonal boron nitride stacks. Field-effect transistors based on this structure demonstrate excellent performance, showing promise for future carbon-based nanoelectronics. Finally, we explore the potential opportunities and challenges in this field.
  • [1]
    Geim A K. Science, 2009, 324:1530
    [2]
    Schwierz F. Nat. Nanotechnol., 2010, 5:487
    [3]
    Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2006, 97:216803
    [4]
    Laird E A, Kuemmeth F, Steele G A et al. Rev. of Mod. Phys., 2015, 87:703
    [5]
    Liu L J, Han J, Xu L et al. Science, 2020, 368:850
    [6]
    Lou S, Lyu B, Zhou X et al. Quantum Front., 2024, 3:3
    [7]
    Saraswat V, Jacobberger R M, Arnold M S et al. ACS Nano, 2021, 15:3674
    [8]
    Wang H, Wang H S, Ma C et al. Nat. Rev. Phys., 2021, 3:791
    [9]
    Han M Y et al. Phys. Rev. Lett., 2007, 98:206805
    [10]
    Shi Z, Yang R, Zhang L et al. Adv. Mater., 2011, 23:3061
    [11]
    Jiao L, Zhang L, Wang X et al. Nature, 2009, 458:877
    [12]
    Kosynkin D V et al. Nature, 2009, 458:872
    [13]
    Tao C, Jiao L, Yazyev O et al. Nat. Phys., 2011, 7:616
    [14]
    Jiao L, Wang X, Diankov G et al. Nat. Nanotechnol., 2010, 5:321
    [15]
    Chen L, He L, Wang H et al. Nat. Comm., 2017, 8:14703
    [16]
    Wang H S, Chen L, Elibol K et al. Nat. Mater., 2021, 20:202
    [17]
    Lyu B, Chen J, Lou S et al. Adv. Mater., 2022, 34:2200956
    [18]
    Lou S, Lyu B, Chen J et al. Nano Lett., 2023, 24:156
    [19]
    Fang T, Konar A, Xing H et al. Phys. Rev. B, 2008, 78:205403
    [20]
    LiX, Wang X, Zhang L et al. Science, 2008, 319:1229
    [21]
    Wang X et al. Phys. Rev. Lett., 2008, 100:206803
    [22]
    Li H et al. ACS Appl. Mater. Interfaces, 2021, 13:52892
    [23]
    Wang G et al. Appl. Phys. Lett., 2016, 109:053101
    [24]
    Wang X, Ouyang Y, Jiao L et al. Nat. Nanotechnol., 2011, 6:563
    [25]
    Lin M W et al. Phys. Rev. B, 2011, 84:125411
    [26]
    Lu X et al. Appl. Phys. Lett., 2016, 108:113103
    [27]
    Rhodes D et al. Nat. Mater., 2019, 18:541
    [28]
    Wang L, Meric I, Wang P Y et al. Science, 2013, 342:614
    [29]
    Lyu B, Chen J, Wang S et al. Nature, 2024, 628:758
  • Related Articles

    [1]XU Tian-Qi, WU Xue-Zhi, YAN Xue-Qing. Development and prospects of laser ion accelerators[J]. PHYSICS, 2021, 50(10): 671-677. DOI: 10.7693/wl20211003
    [2]SHENG Zheng-Ming, CHEN Min, WENG Su-Ming, YUAN Xiao-Hui, CHEN Li-Ming, ZHANG Jie. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. PHYSICS, 2018, 47(12): 753-762. DOI: 10.7693/wl20181201
    [3]LUO Peng, WANG Si-Cheng, HU Zheng-Guo, XU Hu-Shan, ZHAN Wen-Long. Accelerator driven sub-critical systems——a promising solution for cycling nuclear fuel[J]. PHYSICS, 2016, 45(9): 569-577. DOI: 10.7693/wl20160903
    [4]ZHAO Yong-Tao, XIAO Guo-Qing, LI Fu-Li. The physics of inertial confinement fusion based on modern accelerators: status and perspectives[J]. PHYSICS, 2016, 45(2): 98-107. DOI: 10.7693/wl20160204
    [5]Phase-stable acceleration in laser plasma interactions[J]. PHYSICS, 2008, 37(09): 625-627.
    [6]Frontiers of particle accelerators in the world[J]. PHYSICS, 2008, 37(05): 289-297.
    [7]A tabletop accelerator——the laser wakefield accelerator[J]. PHYSICS, 2006, 35(12): 1016-1027.
    [8]A activity nuclear analysis technology——the last development of accelerator mass spectrometry[J]. PHYSICS, 2006, 35(06): 508-513.
    [9]Measurement of 41Ca with accelerator mass spectrometry and its applications[J]. PHYSICS, 2003, 32(09).
    [10]A NEW MECHANISM OF ELECTRON ACCELERATION WITH RELATIVISTIC-INTENSE LASER PULSES IN PLASMA[J]. PHYSICS, 2003, 32(01).

Catalog

    Article views (282) PDF downloads (1426) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return