• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Ji-Jun. Materials design based on machine learning[J]. PHYSICS, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703
Citation: ZHAO Ji-Jun. Materials design based on machine learning[J]. PHYSICS, 2024, 53(7): 450-459. DOI: 10.7693/wl20240703

Materials design based on machine learning

More Information
  • Received Date: July 02, 2024
  • Available Online: July 12, 2024
  • In recent years the rapid growth of computer processing power has led to major breakthroughs in scientific computing and artificial intelligence. The deep integration of these two fields has jointly fostered a data-driven paradigm for scientific research. As a representative of artificial intelligence technology, machine learning has brought unprecedented opportunities for computational materials design, with current applications mainly focusing on property prediction, synthesis prediction, knowledge discovery, and generative inverse design. This article will briefly describe the research progress in this field, and look ahead to the future directions and challenges.
  • [1]
    Song Z,Chen X,Meng F et al. Chin. Phys. B,2020,29(11): 116103
    [2]
    张林峰,王涵. 物理,2024,53(7):431
    [3]
    徐勇. 物理,2024,53(7):442
    [4]
    Ward L,Liu R,Krishna A et al. Phys. Rev. B,2017,96:024104
    [5]
    Xie T,Grossman J C. Phys. Rev. Lett.,2018,120:145301
    [6]
    Zeng S,Zhao Y,Li G et al. npj Comput. Mater.,2019,5:84
    [7]
    Goodall R E A,Lee A A. Nat. Commun.,2020,11:6280
    [8]
    Schmidt J,Pettersson L,Verdozzi C et al. Sci. Adv.,2021,7(49): eabi7948
    [9]
    Chen C,Ong S P. npj Comput. Mater.,2021,7:173
    [10]
    Choudhary K,DeCost B. npj Comput. Mater.,2021,7:185
    [11]
    Davariashtiyani A,Kadkhodaei S. Commun. Mater.,2023,4:105
    [12]
    Yang H,Hu C,Zhou Y et al. 2024,arXiv:2405.04967v2
    [13]
    Isayev O,Oses C,Toher C et al. Nat. Commun.,2017,8(1): 15679
    [14]
    Zhang Y,Ling C. npj Comput. Mater.,2018,4:25
    [15]
    Tehrani A M,Oliynyk A O,Parry M et al. J. Am. Chem. Soc., 2018,140:9844
    [16]
    Seko A,Maekawa T,Tsuda K et al. Phys. Rev. B,2014,89: 054303
    [17]
    Li X,Blaiszik B,Schwarting M E et al. J. Chem. Phys.,2021, 155:154702
    [18]
    Stanev V,Oses C,Kusne A G et al. npj Comput. Mater.,2018,4: 29
    [19]
    Choudhary K,Garrity K. npj Comput. Mater.,2022,8:244
    [20]
    Katsikas G,Sarafidis C,Kioseoglou J. Phys. Status Solidi (b), 2021,258:2000600
    [21]
    Sanvito S,Oses C,Xue J et al. Sci. Adv.,2017,3(4):e1602241
    [22]
    Lu S,Zhou Q,Guo Y et al. Adv. Mater.,2020,32:2002658
    [23]
    Wang P,Xing J,Jiang X et al. ACS Appl. Mater. Interfaces, 2022,14:33726
    [24]
    Saal J E,Kirklin S,Aykol M et al. JOM,2013,65:1501
    [25]
    Jain A,Ong S P,Hautier G et al. APL Materials,2013,1:011002
    [26]
    Curtarolo S,Setyawan W,Har G L W et al. Comput. Mater. Sci., 2012,58:218
    [27]
    https://mdr.nims.go.jp/collections/5712mb227
    [28]
    Bergerhoff G,Hundt R,Sievers R. J. Chem. Inf. Model.,1983, 23:66
    [29]
    Choudhary K,Garrity K F,Reid A C E et al. npj Comput. Mater.,2020,6:173
    [30]
    Yao T S,Tang C Y,Yang M et al. Chin. Phys. Lett.,2019,36: 068101
    [31]
    Aykol M,Montoya J H,Hummelshøj J. J. Am. Chem. Soc., 2021,143:9244
    [32]
    Antoniuk E R,Cheon G,Wang G et al. npj Comput. Mater.,2023,9:155
    [33]
    Kim E,Huang K,Tomala A et al. Scientific data,2017,4(1):1
    [34]
    Kim E,Huang K,Saunders A et al. Chem. Mater.,2017,29:9436
    [35]
    Kim E,Jensen Z,van Grootel A et al. J. Chem. Inf. Model., 2020,60:1194
    [36]
    Kononova O,Huo H,He T et al. Sci. Data,2019,6:203
    [37]
    Chen Z,Xie F,Wan M et al. Chin. Phys. B,2023,32:118104
    [38]
    AI4Science M R. 2023,arXiv:2311.07361v2
    [39]
    王磊,张潘. 物理,2024,53(6):368
    [40]
    Noh J,Kim J,Stein H S et al. Matter,2019,1(5):1370
    [41]
    Court C J,Yildirim B,Jain A et al. J. Chem. Inf. Model.,2020, 60:4518
    [42]
    Kim S,Noh J,Gu G H et al. ACS Cent. Sci.,2020,6:1412
    [43]
    Xiao H,Li R,Shi X et al. Nat. Commun.,2023,14:7027
    [44]
    Zhao Y,Siriwardane E M D,Wu Z et al. npj Comput. Mater., 2023,9:38
    [45]
    Yang S,Cho K,Merchant A et al. 2023,arXiv:2311.09235v2
    [46]
    Zeni C,Pinsler R,Zügner D et al. 2024,arXiv:2312.03687v2
    [47]
    Ye C,Weng H,Wu Q. 2024,arXiv:2403.12478v1
    [48]
    Xie T,Fu X,Ganea O E et al. 2021,arXiv:2110.06197
    [49]
    Szymanski N J,Rendy B,Fei Y et al. Nature,2023,624:86
  • Related Articles

    [1]NIU Qian, QIAO Zhen-Hua, REN Ya-Fei. Model study and numerical calculation[J]. PHYSICS, 2025, 54(2): 83-94. DOI: 10.7693/wl20250202
    [2]WANG Lei, ZHANG Pan. The computation of nature: from the Ising model to generative learning[J]. PHYSICS, 2025, 54(1): 10-18. DOI: 10.7693/wl20250102
    [3]WANG Lei, ZHANG Pan. Generative models for physicists[J]. PHYSICS, 2024, 53(6): 368-378. DOI: 10.7693/wl20240602
    [4]BEN Liu-Bin, WU Yi-Da, ZHU Yong-Ming, HUANG Xue-Jie. A generation of materials, a generation of batteries: cathode materials can upgrade lithium-ion power batteries[J]. PHYSICS, 2022, 51(6): 373-383. DOI: 10.7693/wl20220601
    [5]XU Xiao, LIU Xi-Xi, HE Jia-Qing. Progress and challenges in thermoelectric materials and generators[J]. PHYSICS, 2022, 51(3): 174-179. DOI: 10.7693/wl20220306
    [6]LIU Can-Dong, ZENG Zhi-Nan, LI Ru-Xin. High harmonic generation and lightwave electronics in two-dimensional materials[J]. PHYSICS, 2021, 50(11): 725-731. DOI: 10.7693/wl20211102
    [7]RAN Ke-Jing, WANG Jing-Hui, WEN Jin-Sheng. A new route to quantum spin liquids:material realization of the Kitaev model[J]. PHYSICS, 2021, 50(7): 443-453. DOI: 10.7693/wl20210702
    [8]CHEN Shuang, WU Jia-Min, SHI Yu-Sheng. General introduction of 3D printing materials and their applications[J]. PHYSICS, 2018, 47(11): 715-724. DOI: 10.7693/wl20181104
    [9]CAO Kun, HE Li-Xin. First-principles effective Hamiltonian modeling of multiferroic materials[J]. PHYSICS, 2014, 43(03): 157-165. DOI: 10.7693/wl20140302
    [10]Spintronic materials, physics and device designs[J]. PHYSICS, 2008, 37(06): 392-399.

Catalog

    Article views (1143) PDF downloads (1818) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return