• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Lei, ZHANG Pan. Generative models for physicists[J]. PHYSICS, 2024, 53(6): 368-378. DOI: 10.7693/wl20240602
Citation: WANG Lei, ZHANG Pan. Generative models for physicists[J]. PHYSICS, 2024, 53(6): 368-378. DOI: 10.7693/wl20240602

Generative models for physicists

More Information
  • Received Date: May 15, 2024
  • Available Online: June 14, 2024
  • The essence of scientific research is about creation. Generative artificial intelligence (AI) has opened up an endless space of imagination for more creative scientific research. As the core of generative AI, generative models learn the underlying probability distribution from data, and then randomly sample from it to generate new samples. Generative models and statistical physics are essentially two sides of the same coin. This article introduces modern generative models including diffusion models, autoregressive models, flow models, and variational autoencoders from a physics perspective. Generative models demonstrate tremendous potential in the generation and design of materials at the atomic scale. Moreover, based on their inherent connection with statistical physics, they have a unique advantage in optimizing Nature’s cost function, the variational free energy, thereby providing new possibilities for solving difficult problems in statistical physics and quantum many-body systems. At the same time, physical insights are also driving the development and innovation of generative models. By drawing inspiration from physical principles and methods, more efficient and unified generative models can be designed to address challenges in the field of AI.
  • [1]
    费曼的黑板图片. http://archives-dc.library.caltech.edu/islandora/object/ct1%3A483
    [2]
    OpenAI官网关于生成模型的介绍. https://openai.com/research/ generative-models
    [3]
    Jensen不等式说明,对于凸函数f有:f (x)的平均值≥ f (x的平均值)。-ln x是一个凸函数例子,据此可以证明相对熵的非负性。
    [4]
    Tomczak J M. Deep Generative Modeling. Springer International Publishing,2022
    [5]
    Murphy K P. Probabilistic Machine Learning: Advanced Topics. MIT Press,2023
    [6]
    Bishop C M,Bishop H. Deep Learning:Foundations and Concepts. Springer International Publishing,2024
    [7]
    Ackley D H,Hinton G E,Sejnowski T J. Cognitive Science,1985, 9(1):147
    [8]
    Nguyen H C,Zecchina R,Berg J. Advances in Physics,2017,66(3):197
    [9]
    Vincent P. Neural Computation,2011,23(7):1661
    [10]
    Song Y,Ermon S. Generative Modeling by Estimating Gradients of the Data Distribution. In: Wallach H et al (Ed.). Advances in Neural Information Processing Systems 32,2019
    [11]
    Kirkpatrick S,Gelatt C D,Vecchi M P. Science,1983,220(4598):671
    [12]
    Sohl-Dickstein J,Weiss E A,Maheswaranathan N et al. International Conference on Machine Learning,2015,37:2256
    [13]
    Vaswani A,Shazeer N,Parmar N et al. Advances in Neural Information Processing Systems,2017,30:6000
    [14]
    60行代码实现GPT2模型. https://jaykmody.com/blog/gpt-fromscratch/
    [15]
    OpenAI开发的GPT2模型. https://openai.com/index/better-language-models/
    [16]
    300行 FORTRAN代码 实现 GPT2模 型. https://ondrejcertik.com/blog/2023/03/fastgpt-faster-than-pytorch-in-300-lines-offortran/
    [17]
    侯捷. STL源码剖析. 武汉:华中科技大学出版社,2002
    [18]
    Wei J,Tay Y,Bommasani R et al. 2022,arXiv:2206.07682
    [19]
    Kaplan J et al. 2020,arXiv:2001.08361
    [20]
    Schaeffer R et al. 2023,arXiv:2304.15004
    [21]
    关于大语言模型中涌现现象的讨论. https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
    [22]
    Papamakarios G et al. Journal of Machine Learning Research, 2021,22:1
    [23]
    Kingma D P,Dhariwal P. Advances in Neural Information Processing Systems,2018,32:10236
    [24]
    Li S H,Wang L. Phys. Rev. Lett.,2018,121:260601
    [25]
    Li S H,Dong C X,Zhang L F et al. Phys. Rev. X,2020,10: 021020
    [26]
    Chen R T Q,Rubanova Y,Bettencourt J et al. Advances in Neural Information Processing Systems,2018,32:6572
    [27]
    Zhang L F,Weinan E,Wang L. 2018,arXiv:1809.10188
    [28]
    Maoutsa D,Reich S,Opper M. Entropy,2020,22(8):802
    [29]
    Song Y,Sohl-Dickstein J,Kingma D P et al. 2020,arXiv: 2011.13456
    [30]
    Lipman Y,Chen R T Q,Ben-Hamu H et al. 2022,arXiv: 2210.02747
    [31]
    Liu X C,Gong C Y,Liu Q. 2022,arXiv:2209.03003
    [32]
    Albergo M S,Vanden-Eijnden E. 2022,arXiv:2209.15571
    [33]
    Zhao L,Wang L. Chin. Phys. Lett.,2023,40:120201
    [34]
    Gómez-Bombarelli R,Wei J N,Duvenaud D et al. ACS Central Science,2018,4(2):268
    [35]
    Cédric V. Topics in Optimal Transportation,vol. 58. American Mathematical Soc.,2016
    [36]
    训练数据的重要性. 2023,https://nonint.com/2023/06/10/the-itin-ai-models-is-the-dataset/
    [37]
    Ingraham J B,Baranov M,Costello Z et al. Nature,2023,623: 1070
    [38]
    DALL.E.3,https://openai.com/index/dall-e-3
    [39]
    Madani A,Krause B,Greene E R et al. Nature Biotechnology, 2023,41:1099
    [40]
    Xie T,Fu X,Ganea O et al. 2021,arXiv:2110.06197
    [41]
    Jiao R,Huang W B,Lin P J et al. Advances in Neural Information Processing Systems,2024,36:11464
    [42]
    Zeni C,Pinsler R,Zügner D et al. 2023,arXiv:2312.03687
    [43]
    Flam-Shepherd D,Aspuru-Guzik A. 2023,arXiv:2305.05708
    [44]
    Antunes L M,Butler K T,Grau-Crespo R. 2023,arXiv: 2307.04340
    [45]
    The Bitter Lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html
    [46]
    Cao Z D,Luo X S,Lv J et al. 2024,arXiv:2403.15734
    [47]
    Merchant A,Batzner S,Schoenholz S S et al. Nature,2023,624: 80
    [48]
    Cheetham A K,Seshadri R. Chemistry of Materials,2024,36(8): 3490
    [49]
    张林峰,王涵. 模拟微观世界:从薛定谔方程到大原子模型. 物理,2024,待发表
    [50]
    Wu D,Wang L,Zhang P. Phys. Rev. Lett.,2019,122(8):080602
    [51]
    Xie H,Li Z H,Wang H et al. Phys. Rev. Lett.,2023,131(12): 126501
    [52]
    Xie H,Zhang L F,Wang L. SciPost Physics,2023,14:154
    [53]
    Feynman R P,Cohen M. Physical Review,1956,102:1189
    [54]
    He K M,Zhang X Y,Ren S Q et al. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016. pp. 770—778
    [55]
    王磊,刘金国. 物理,2021,50(2):69
  • Related Articles

    [1]CHEN Si-Yuan, HUANG Qing-Guo. The North American Nanohertz Observatory for Gravitational Waves[J]. PHYSICS, 2024, 53(8): 532-540. DOI: 10.7693/wl20240805
    [2]ZHANG Peng-Jie. GW170817 and standard siren cosmology[J]. PHYSICS, 2019, 48(9): 588-592. DOI: 10.7693/wl20190907
    [3]ZHANG Xin-Min, SU Meng, LI Hong, WAN You-Ping, CAI Yi-Fu, LI Ming-Zhe, PIAO Yun-Song. The origin of the universe and the Ali primordial gravitational waves detection[J]. PHYSICS, 2016, 45(5): 320-326. DOI: 10.7693/wl20160506
    [4]ZHANG Shuang-Nan. The black holes in the gravitational event of the Laser Interferometer Gravitational-wave Observatory[J]. PHYSICS, 2016, 45(5): 311-319. DOI: 10.7693/wl20160505
    [5]ZHU Zong-Hong, WANG Yun-Yong. The prediction,detection and discovery of gravitational wave[J]. PHYSICS, 2016, 45(5): 300-310. DOI: 10.7693/wl20160504
    [6]FENG Yan. Laser interferometer gravitational-wave detectors——hearing aids for human on deep universe[J]. PHYSICS, 2016, 45(5): 293-299. DOI: 10.7693/wl20160503
    [7]LI Yong. Gravitational waves: ripples in spacetime and music of the spheres[J]. PHYSICS, 2016, 45(5): 287-292. DOI: 10.7693/wl20160502
    [8]HU Jian-Wei, YANG Run-Qiu, WANG Shao-Jiang, JI Li-Wei. Alexei Starobinsky and inflationary cosmology[J]. PHYSICS, 2015, 44(10): 665-670. DOI: 10.7693/wl20151004
    [9]MA Yin-Zhe. Planck: discovering insight of the Universe[J]. PHYSICS, 2015, 44(03): 137-151. DOI: 10.7693/wl20150301
    [10]The cosmological constant problem[J]. PHYSICS, 2002, 31(08).

Catalog

    Article views (1381) PDF downloads (2339) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return