• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Lin-Feng, WANG Han. Simulating the microscopic world:from the Schrödinger equation to the large atomic model[J]. PHYSICS, 2024, 53(7): 431-441. DOI: 10.7693/wl20240701
Citation: ZHANG Lin-Feng, WANG Han. Simulating the microscopic world:from the Schrödinger equation to the large atomic model[J]. PHYSICS, 2024, 53(7): 431-441. DOI: 10.7693/wl20240701

Simulating the microscopic world:from the Schrödinger equation to the large atomic model

More Information
  • Received Date: May 12, 2024
  • Available Online: July 12, 2024
  • With the rapid advance of artificial intelligence, its integration with physical modeling has introduced revolutionary tools for scientific research at the microscopic scale. This paper delineates the development from the approximate solutions of quantum mechanics based on the Schrödinger equation to the emergence of the large atomic model (LAM), with particular emphasis on the application of machine learning in atomic-scale simulations. The theoretical foundations underlying the synergy between artificial intelligence and physical modeling are first discussed. This is followed by a comprehensive analysis of the implementation methodologies for this integration in atomic-scale simulations, including the construction and training strategies of machine learning models. Next, the critical roles of data accumulation, software tools, and engineering infrastructure in propelling advancements in this domain are examined. The potential impact of LAM on future scientific research and industrial applications is also envisioned. Through sustained technological innovation and interdisciplinary collaboration, it is anticipated that LAM will significantly contribute to many fields, including materials science, chemical engineering, and biotechnology, thereby ushering in a new era of development in basic research and applications.
  • [1]
    Feynman R P. The Feynman Lectures on Physics. http://www.feynman lectures.caltech.edu
    [2]
    Dirac P A M. Proceedings of the Royal Society of London,series A,1929,123(792):714
    [3]
    Schrödinger E. Physical Review,1926,28(6):1049
    [4]
    Kohn W. Reviews of Modern Physics,1999,71(5):1253
    [5]
    Pauli W. Exclusion Principle and Quantum Mechanics. In:Writings on Physics and Philosophy,Springer,1946. pp.165—181
    [6]
    Hartree D R. The Wave Mechanics of an Atom with a Noncoulomb Central Field. Part I. Theory and Methods. In:Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press,1928. pp.89—110
    [7]
    Fock V. Zeitschrift für Physik,1930,61:126
    [8]
    Hylleraas E A. Zeitschrift für Physik,1928,48(7):469
    [9]
    Čížek J. The Journal of Chemical Physics,1966,45(11):4256
    [10]
    Ceperley D,Chester G V,Kalos M H. Physical Review B,1977, 16(7):3081
    [11]
    White S R. Phys. Rev. Lett.,1992,69(19):2863
    [12]
    Knizia G,Chan G K L. Phys. Rev. Lett.,2012,109(18):186404
    [13]
    Han J Q,Zhang L F et al. Physics Today,2021,74(7):36
    [14]
    Born M,Oppenheimer R. Annalen der Physik,1927,389(20): 457
    [15]
    Hohenberg P,Kohn W. Physical Review,1964,136(3B):B864
    [16]
    Kohn W,Sham L J. Physical Review,1965,140(4A):A1133
    [17]
    Medvedev M G,Bushmarinov I S,Sun J W et al. Science,2017, 355(6320):49
    [18]
    Car R,Parrinello M. Phys. Rev. Lett.,1985,55(22):2471
    [19]
    Jia W L,Wang H,Chen M H et al. Pushing the Limit of Molecular Dynamics With ab initio Accuracy to 100 Million Atoms with Machine Learning. In:SC20:International Conference for High Performance Computing,Networking,Storage and Analysis, IEEE,2020.pp.1—14
    [20]
    Jumper J,Evans R,Pritzel A et al. Nature,2021,596(7873):583
    [21]
    Behler J,Parrinello M. Phys. Rev. Lett.,2007,98(14):146401
    [22]
    Zhang L F,Han J W,Wang H et al. Phys. Rev. Lett.,2018,120(14):143001
    [23]
    Schütt K,Kindermans P J,Felix H E S et al. SchNet:A Continuous-filter Convolutional Neural Network for Modeling Quantum Interactions. In:Advances in Neural Information Processing Systems 30(NIPS 2017)
    [24]
    Artrith N,Morawietz T,Behler J. Physical Review B,2011,83(15):153101
    [25]
    Zhang L F,Wang H,Muniz M C et al. The Journal of Chemical Physics,2022,156(12):124107
    [26]
    Grisafi A,Ceriotti M. The Journal of Chemical Physics,2019, 151(20):204105
    [27]
    Noether E. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,Mathematisch-Physikalische Klasse,1918,1918: 235
    [28]
    Hellmann H. Einfuhrung in die quantenchemie. Springer,1937
    [29]
    Feynman R P. Physical Review,1939,56(4):340
    [30]
    Smith J S,Nebgen B,Lubbers N et al. The Journal of Chemical Physics,2018,148(24):241733
    [31]
    Zhang L F,Lin D Y,Wang H et al. Physical Review Materials, 2019,3(2):023804
    [32]
    Zhang L F,Wang H,Car R et al. Phys. Rev. Lett.,2021,126(23): 236001
    [33]
    Abadi M,Barham P,Chen J M et al. TensorFlow:A System for Large-Scale Machine Learning. In:12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016. pp.265—283
    [34]
    Paszke A,Gross S,Massa F et al. Advances in Neural Information Processing Systems,2019,32:8026
    [35]
    Wang H,Zhang L F,Han J Q et al. Computer Physics Communications,2018,228:178
    [36]
    Doerr S,Majewski M,Pérez A et al. Journal of Chemical Theory and Computation,2021,17(4):2355
    [37]
    Liu X,Han Y B,Li Z Y et al. Dflow:A Python Framework for Constructing Cloud-native Ai-for-science Workflows. 2024, arXiv:2404.18392
    [38]
    Li Z Y,Wen T Q,Zhang Y Z et al. An Extendable Cloud-native Alloy Property Explorer. 2024,arXiv:2404.17330
    [39]
    Deng B W,Zhong P C,Jun K et al. Nature Machine Intelligence, 2023,5(9):1031
    [40]
    Batatia I,Benner P,Chiang Y et al. A Foundation Model For Atomistic Materials Chemistry. 2023,arXiv:2401.00096
    [41]
    Perdew J P,Burke K,Ernzerhof M. Phys. Rev. Lett.,1996,77(18):3865
    [42]
    Anisimov V I,Zaanen J,Andersen O K. Physical Review B, 1991,44(3):943
    [43]
    Merchant A,Batzner S,Schoenholz S S et al. Nature,2023,624: 80
    [44]
    Batzner S,Musaelian A,Sun L X et al. SE (3)-equivariant Graph Neural Networks For Data-Efficient And Accurate Interatomic Potentials. 2021,arXiv:2101.03164
    [45]
    Smith J S,Isayev O,Roitberg A E. Scientific Data,2017,4(1):1
    [46]
    Chai J D,Head-Gordon M. Physical Chemistry Chemical Physics,2008,10(44):6615
    [47]
    Chanussot L,Das A,Goyal S et al. ACS Catalysis,2021,11(10): 6059
    [48]
    Hammer B,Hansen L B,Nørskov J K. Physical Review B,1999, 59(11):7413
    [49]
    Becke A D. The Journal of Chemical Physics,1993,98(2):1372
    [50]
    Mardirossian N,Head-Gordon M. Molecular Physics,2017,115(19):2315
    [51]
    Sun J W,Ruzsinszky A,Perdew J P. Phys. Rev. Lett.,2015,115(3):036402
    [52]
    Kaplan J,McCandlish S,Henighan T et al. Scaling Laws for Neural Language Models. 2020,arXiv:2001.08361
    [53]
    Brown T,Mann B,Ryder N et al. Advances in Neural Information Processing Systems,2020,33:1877
    [54]
    Zhang D,Liu X,Zhang X Y et al. DPA-2:Towards a Universal Large Atomic Model for Molecular and Material Simulation. 2023,arXiv:2312.15492
  • Related Articles

    [1]HONG Jia-Ni, ZHAO Zheng-Pu, TIAN Ye, JIANG Ying. From slippery to superlubrication: the lubrication behavior of ice at the atomic scale[J]. PHYSICS, 2025, 54(4): 266-272. DOI: 10.7693/wl20250407
    [2]YAN Bo. Quantum simulation based on ultracold atoms in a lattice[J]. PHYSICS, 2021, 50(1): 31-36. DOI: 10.7693/wl20210105
    [3]Katherine Wright. Cold atoms impersonate superconductors[J]. PHYSICS, 2019, 48(9): 601-601.
    [4]HUANG Yong-Feng, YAN Lei, LI Hui, MENG Sheng. Water-solid interaction at the atomic scale[J]. PHYSICS, 2016, 45(11): 707-712. DOI: 10.7693/wl20161103
    [5]Adam Mann. Atom-scale ohmmeter[J]. PHYSICS, 2015, 44(07): 458-458.
    [6]XIAO Dong-Dong, GU Lin. Uncovering the atomic-scale structure of electrode materials for lithium ion batteries[J]. PHYSICS, 2014, 43(08): 543-550. DOI: 10.7693/wl20140806
    [7]Heterogeneous catalysis on an atomic scale[J]. PHYSICS, 2007, 36(05): 370-376.
    [8]Full quantum state resolved scattering dynamics of high Rydberg H atom with hydrogen molecule: the validity of Fermi model[J]. PHYSICS, 2006, 35(07): 543-545.
    [9]Quantum manipulations based on macroscopic artificial atoms[J]. PHYSICS, 2006, 35(04): 277-285.
    [10]Atom optics Ⅱ——quantum atom optics[J]. PHYSICS, 2006, 35(02): 151-159.
  • Cited by

    Periodical cited type(2)

    1. 温李阳,姚明佳,陈忻. 智能驱动的材料研发态势及对策建议. 前瞻科技. 2025(01): 16-27 .
    2. 石锋,刘金华,张灵翠,徐越,娄有信,沈燕,赵金博. 电子发展简史. 物理学进展. 2025(02): 79-104 .

    Other cited types(0)

Catalog

    Article views (977) PDF downloads (1779) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return