• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
Fang Dong-Liang. Neutrinoless double-beta decay and new physics beyond the Standard Model[J]. PHYSICS, 2024, 53(5): 310-316. DOI: 10.7693/wl20240503
Citation: Fang Dong-Liang. Neutrinoless double-beta decay and new physics beyond the Standard Model[J]. PHYSICS, 2024, 53(5): 310-316. DOI: 10.7693/wl20240503

Neutrinoless double-beta decay and new physics beyond the Standard Model

More Information
  • Received Date: April 09, 2024
  • Available Online: May 14, 2024
  • As one of the rarest processes in nature, neutrinoless double-beta decay is the key in our search for new physics beyond the Standard Model, where we are facing big challenges, both theoretically and experimentally. The precise prediction for this process relies heavily on the nuclear many-body approaches which still lack necessary precision. Results from various methods differ; they can be explained qualitatively but require quantitative investigation. Another great challenge is to determine the underlying mechanisms with only limited observables—chiefly, the properties of emitted electrons and final nuclei—and research in this area is still inadequate.
  • [1]
    Fermi E. Z. Phys.,1934,88:161
    [2]
    Goeppert-Mayer M. Phys. Rev.,1935,48:512
    [3]
    Elliot S R,Hahn A A,Moe K K. Phys. Rev. Lett.,1986,56:2582
    [4]
    Furry W H. Phys. Rev.,1939,56:1184
    [5]
    Doi M,Kotani T,Takasugi E. Prog. Theor. Phys. Suppl.,1985, 83:1
    [6]
    Feruglio F,Strumia A,Vissani F. Nucl. Phys. B,2002,637:345
    [7]
    Cirigliano V,Dekens W,De Vries J et al. JHEP,2018,12:097
    [8]
    Menendez J. J. Phys. G,2018,45:014003
    [9]
    Fang D L,Faessler A,Simkovic F. Phys. Rev. C,2018,97:045503
    [10]
    Song L S,Yao J M,Ring P et al. Phys. Rev. C,2017,95:024503
    [11]
    Barea J,Kotila J,Iachello F. Phys. Rev. C,2015,91:034304
    [12]
    Rath P K,Chandra R,Chaturvedi K et al. Front. in Phys.,2019, 7:64
    [13]
    Tomoda T. Nucl. Phys. A,1988,484:635
    [14]
    Fang D L,Faessler A. Phys. Rev. C,2023,107:015501
  • Related Articles

    [1]LUO Xiao-Feng, LIU Feng, XU Nu. Quark soup cooking at trillions of degrees: experimental study on the phase structure of nuclear matter and the quantum chromodynamics critical point[J]. PHYSICS, 2021, 50(2): 98-107. DOI: 10.7693/wl20210205
    [2]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [3]LU Kun-Quan, CAO Ze-Xian. On the novel principle of earthquake and its predictability[J]. PHYSICS, 2018, 47(4): 211-229. DOI: 10.7693/wl20180402
    [4]LUO Peng, WANG Si-Cheng, HU Zheng-Guo, XU Hu-Shan, ZHAN Wen-Long. Accelerator driven sub-critical systems——a promising solution for cycling nuclear fuel[J]. PHYSICS, 2016, 45(9): 569-577. DOI: 10.7693/wl20160903
    [5]Chen Chien-chih, John B. Rundle, Donald L. Turcotte , YIN Xiang-Chu. Theory of critical transitions helps understand seismicity-based earthquake forecasting techniques[J]. PHYSICS, 2013, 42(05): 329-333. DOI: 10.7693/wl20130503
    [7]On the plastic deformation mechanism of metallic glasses[J]. PHYSICS, 2010, 39(09): 628-630.
    [8]Multiple superconducting gaps and anisotropic spin fluctuations in iron-pnictides revealed by nuclear magnetic resonance[J]. PHYSICS, 2009, 38(09): 632-638.
    [9]The state of fluids deep inside the Earth and its significance in the physics of earthquake sources[J]. PHYSICS, 2009, 38(04): 238-247.
    [10]Quantitative prediction of critical size for the formation of semiconductor quantum dots[J]. PHYSICS, 2006, 35(06): 447-450.

Catalog

    Article views (191) PDF downloads (1529) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return