• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Jun-Zheng, YU Xiao, YUE Qian. Development and prospects of neutrinoless double-beta decay experiments[J]. PHYSICS, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502
Citation: WANG Jun-Zheng, YU Xiao, YUE Qian. Development and prospects of neutrinoless double-beta decay experiments[J]. PHYSICS, 2024, 53(5): 301-309. DOI: 10.7693/wl20240502

Development and prospects of neutrinoless double-beta decay experiments

More Information
  • Received Date: March 31, 2024
  • Available Online: May 14, 2024
  • Neutrinoless double-beta decay is an important physics topic beyond the Standard Model. Based on decades of theoretical and experimental research, a somewhat full understanding of its possible physical mechanism and the experimental technical requirements have been established. Many groups worldwide are attempting to detect neutrinoless double-beta decay events using various detection techniques, and have given a lower half-life limit of 1026 years. Now, the next generation of experimental facilities are being appraised or are under construction, with the aim to improve the halflife sensitivity to above 1027 years. The China Jinping Underground Laboratory (CJPL), a world-leading ultralow background facility, provides many different kinds of detection techniques. This paper will review the current status of the major facilities worldwide conducting neutrinoless double-beta decay experiments, including the prospects of such experiments in CJPL,which will be based on various detection schemes.
  • [1]
    Fermi E. Ric. Scientifica,1933,4:491
    [2]
    Fermi E. Nuovo Cim.,1934,11:1
    [3]
    Fermi E. Z. Phys.,1934,88:161
    [4]
    Goeppert M. Phys. Rev.,1935,48:512
    [5]
    Majorana E. Nuovo Cim.,1937,14:171
    [6]
    Furry W H. Phys. Rev.,1939,56:1184
    [7]
    Schechter J,Valle J W F. Phys. Rev. D,1982,25:774
    [8]
    Racah G. Nuovo Cim.,1937,14:322
    [9]
    Fukuda Y et al. Phys. Rev. Lett.,1998,81:1158
    [10]
    Ahmad Q R et al. Phys. Rev. Lett.,2002,89:011302
    [11]
    Bracco A. Nuclear Physics News,2017,27(3):3
    [12]
    Dodge G E. Nuclear Physics News,2024,34(1):3
    [13]
    Masaru D et al. Prog. Theor. Phys.,1981,66(5):1739
    [14]
    Masaru D et al. Prog. Theor. Phys.,1981,66(5):1765
    [15]
    中国科学院.中国科学发展战略·无中微子双贝塔衰变实验.北京:科学出版社,2020
    [16]
    Agostini M et al. Phys. Rev. Lett.,2020,125:252502
    [17]
    Arnquist L J et al. Phys. Rev. Lett.,2023,130:062501
    [18]
    Anton G et al. Phys. Rev. Lett.,2019,123:161802
    [19]
    Abe S et al. Phys. Rev. Lett.,2023,130:051801
    [20]
    The CUORE Collaboration. Nature,2022,604:53
    [21]
    Roger G H. Searching for 0νββ Decay with CUORE and CUPID. University of California,2021
    [22]
    Asakura K et al. AIP Conf. Proc.,2015,1666:170003
    [23]
    Gando A et al. Phys. Rev. Lett.,2016,117:082503
    [24]
    KamLAND-Zen Collaboration. Phys.:Conf. Ser.,2017,888:012031
    [25]
    Adhikari G et al. J. Phys. G:Nucl. Part. Phys.,2022,49:015140
    [26]
    Renner J,Díaz López G et al. J. High Energ. Phys.,2019,2019:230
    [27]
    Martín-Albo J,Muñoz Vidal J et al. J. High Energ. Phys.,2016, 2016:159
    [28]
    Álvarez V et al. JINST,2013,8:T05002
    [29]
    Miloradovic M. Calibration,Background Study,and Search for New Physics with the GERDA Experiment. Universität Zürich, 2020
    [30]
    Cheng J P et al. Annu. Rev. Nucl. Part. Sci.,2017,67:231
    [31]
    Wang L,Yue Q,Kang K et al. Sci. China Phys. Mech. Astron., 2017,60:071011
    [32]
    Ma H,Dai W H,Yang L T. Proceeding of Science,2023, TAUP2023:200
    [33]
    Ni K X et al. Chin. Phys. C,2019,43:113001
    [34]
    An M M et al. Nucl. Instrum. Meth. A,2016,810:144
    [35]
    Zhao J,Wen L J,Wang Y F et al. Chin. Phys. C,2017,41(5):053001
    [36]
    Cao J et al. Chin. Phys. C,2020,44(3):031001
  • Related Articles

    [1]LUO Xiao-Feng, LIU Feng, XU Nu. Quark soup cooking at trillions of degrees: experimental study on the phase structure of nuclear matter and the quantum chromodynamics critical point[J]. PHYSICS, 2021, 50(2): 98-107. DOI: 10.7693/wl20210205
    [2]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [3]LU Kun-Quan, CAO Ze-Xian. On the novel principle of earthquake and its predictability[J]. PHYSICS, 2018, 47(4): 211-229. DOI: 10.7693/wl20180402
    [4]LUO Peng, WANG Si-Cheng, HU Zheng-Guo, XU Hu-Shan, ZHAN Wen-Long. Accelerator driven sub-critical systems——a promising solution for cycling nuclear fuel[J]. PHYSICS, 2016, 45(9): 569-577. DOI: 10.7693/wl20160903
    [5]Chen Chien-chih, John B. Rundle, Donald L. Turcotte , YIN Xiang-Chu. Theory of critical transitions helps understand seismicity-based earthquake forecasting techniques[J]. PHYSICS, 2013, 42(05): 329-333. DOI: 10.7693/wl20130503
    [7]On the plastic deformation mechanism of metallic glasses[J]. PHYSICS, 2010, 39(09): 628-630.
    [8]Multiple superconducting gaps and anisotropic spin fluctuations in iron-pnictides revealed by nuclear magnetic resonance[J]. PHYSICS, 2009, 38(09): 632-638.
    [9]The state of fluids deep inside the Earth and its significance in the physics of earthquake sources[J]. PHYSICS, 2009, 38(04): 238-247.
    [10]Quantitative prediction of critical size for the formation of semiconductor quantum dots[J]. PHYSICS, 2006, 35(06): 447-450.

Catalog

    Article views (406) PDF downloads (1598) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return