• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JIAO Yi, BAI Zheng-He, LI Xiao. Accelerator physics and technology of the fourthgeneration synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201
Citation: JIAO Yi, BAI Zheng-He, LI Xiao. Accelerator physics and technology of the fourthgeneration synchrotron radiation light source[J]. PHYSICS, 2024, 53(2): 71-79. DOI: 10.7693/wl20240201

Accelerator physics and technology of the fourthgeneration synchrotron radiation light source

More Information
  • Received Date: October 23, 2023
  • Available Online: February 22, 2024
  • Synchrotron radiation light sources based on electron storage rings are the most widely used high-performance X-ray sources in the past 20th century, and have become important tools for frontier research in the fields of physics, chemistry, energy and environment, biomedical science, and advanced materials. In the 21st century, the foremost ring-based light source is the fourth-generation synchrotron radiation light source (4GLS). It generally adopts a compact multi-bend achromat lattice to achieve ultralow electron beam emittance that approaches the diffraction limit of X-rays, thus enabling an increase in the brilliance of the synchrotron radiation by 2—3 orders of magnitude compared to existing third-generation sources. This article will focus on the key accelerator physics and technology issues, as well as the current status, of 4GLSs around the world.
  • [1]
    Zhao Z T. Reviews of Accelerator Science and Technology,2010, 03:57
    [2]
    Elder F R et al. Physical Review,1947,71(11):829
    [3]
    Batterman B W. Nucl. Instr. and Meth. A,1980,172:21
    [4]
    Tang E,Xian D. Review of Scientific Instruments,1992,63:1575
    [5]
    Carr G et al. Proc. PAC,2001,4:2608
    [6]
    Craievich A F,Rodrigues A R. Hyperfine Interactions,1998,113: 465
    [7]
    Wang L et al. Proc. IPAC,2010:2588
    [8]
    Jackson A. Proc. PAC,1993:1432
    [9]
    Decker G. Proc. PAC,1996:698
    [10]
    Bcchetta C J et al. Proc. PAC,1997:826
    [11]
    Zyngier H et al. Proc. PAC,1995,1:155
    [12]
    Date S et al. Proc. PAC,1999:2039
    [13]
    Bakker R et al. Proc. PAC,1999:2382
    [14]
    Kempson V C. Proc. EPAC,2008:2052
    [15]
    M. Filhol et al. Proc. EPAC,2008:2022
    [16]
    Jiang M H et al. Chinese Science Bulletin,2009,54:4171
    [17]
    Eriksson M et al. J. Synchrotron Rad.,2014,21:837
    [18]
    Hettel R J. Synchrotron Rad.,2014,21:843
    [19]
    Einfeld D et al. Proc. PAC,1995:177
    [20]
    Johansson M et al. J. Synchrotron Rad.,2014,21:884
    [21]
    Borland M. Nucl. Instr. and Meth. A,2006,557:230
    [22]
    Al-Dmour E et al. J. Synchrotron Rad.,2014,21:878
    [23]
    Tavares P F et al. J. Synchrotron Rad.,2014,21:862
    [24]
    Liu L et al. J. Synchrotron Rad.,2014,21:904
    [25]
    Raimondi P et al. Commun. Phys.,2023,6:82
    [26]
    Borland M et al. Proc. NAPAC,2016:877
    [27]
    Jiao Y et al. J. Synchrotron Rad.,2018,25:1611
    [28]
    Bai Z H et al. Proc. IPAC,2021:407
    [29]
    https://als.lbl.gov/als-u/als-u-approach/
    [30]
    Sands M. SLAC-PUB-121,1970
    [31]
    Teng L C. Fermilab Report TM-1269,1984
    [32]
    Nagaoka R et al. Nucl. Instr. and Meth. A,2007,575:292
    [33]
    Jiao Y et al. Phys. Rev. ST Accel. Beams,2011,14:054002
    [34]
    Farvacque L et al. Proc. IPAC,2013:79
    [35]
    Streun A. Nucl. Instr. and Meth. A,2014,737:148
    [36]
    Chavanne J et al. Overview of magnet design issues,presentation at DLSR workshop,2013
    [37]
    Hwang C S et al. Phys. Rev. ST Accel. Beams,2011,14:044801
    [38]
    Zhang F J et al. J. Synchrotron Rad.,2020,27:1494
    [39]
    Wallen E. Proc. IPAC,2022:1624
    [40]
    Li X Y et al. Proc. IPAC,2021:339
    [41]
    Emery L,Borland M. Proc. PAC,2003:256
    [42]
    Aiba M et al. Phys. Rev. Accel. Beams,2015,18:020701
    [43]
    Sajaev V. Phys. Rev. Accel. Beams,2019,22:040102
    [44]
    Raimondi P et al. Phys. Rev. Accel. Beams,2021,24:110701
    [45]
    Lill R et al. Proc. IBIC,2016:55
    [46]
    Bec G L et al. Phys. Rev. Accel. Beams,2021,24:072401
    [47]
    Nagaoka R,Bane K L F. J. Synchrotron Rad.,2014,21:937
    [48]
    Tavares P F et al. J. Synchrotron Rad.,2018,25:1291
    [49]
    Liu L et al. Proc. IPAC,2021:13
    [50]
    焦毅,潘卫民. 强激光与粒子束,2022,34:104002
    [51]
    Bai Z H et al. Proc. IPAC,2023:1075
    [52]
    Kim J. Beam dynamics simulations for Korea-4GSR,presentation at Accelerator Toolbox Workshop,2023
    [53]
    Biasci J C et al. Synchrotron Radiation News,2014,27(6):8
    [54]
    Tarawneh H et al. Proc. PAC,2013:288
    [55]
    Xu G et al. Chin. Phys. C,2016,40:027001
    [56]
    Alekou A et al. Proc. IPAC,2016:2940
    [57]
    Tanaka H. Synchrotron Radiation News,2014,27(6):23
    [58]
    Agapov I et al. Proc. IPAC,2022:1431
    [59]
    Jang G S et al. Nucl. Instr. and Meth. A,2022,1034:166779
    [60]
    Streun A et al. Proc. IPAC,2015:1724
    [61]
    Riemann B,Streun A. Phys. Rev. Accel. Beams,2019,22: 021601
    [62]
    Streun A et al. Phys. Rev. Accel. Beams,2023,26:091601
    [63]
    Karantzoulis E et al. Proc. IPAC,2019:1468
    [64]
    Loulergue A et al. Proc. IPAC,2021:1485
    [65]
    Dallin L O. Proc. IPAC,2019:1385
    [66]
    Tian S Q et al. Proc. IPAC,2015:304
    [67]
    Zhao Y et al. Nucl. Instr. and Meth. A,2023,1056:168565
    [68]
    Jiao Y et al. Proc. IPAC,2018:1363
    [69]
    Jiao Y et al. Proc. IPAC,2019:1203
    [70]
    Jiao Y et al. Radiat. Detect. Technol. Methods,2020,4:415
    [71]
    孟才,曹建社,何大勇等. 强激光与粒子束,2023,35:054001
    [72]
    Li W M et al. Proc. EPAC,2008:2136
    [73]
    Wang L et al. Proc. EPAC,2008:2142
  • Related Articles

    [1]QIN Ya-Yuan, SHEN Yao, CHEN Gang, ZHAO Jun. Magnetic frustration and quantum fluctuation in rare-earth triangular-lattice magnets[J]. PHYSICS, 2021, 50(7): 454-462. DOI: 10.7693/wl20210703
    [2]LIU Zheng-Xin, WANG Xiao-Qun, ZHANG Qing-Ming. Spring in the desert of magnets——quantum spin liquids[J]. PHYSICS, 2021, 50(7): 429-442. DOI: 10.7693/wl20210701
    [3]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [4]CHEN Shuang, WU Jia-Min, SHI Yu-Sheng. General introduction of 3D printing materials and their applications[J]. PHYSICS, 2018, 47(11): 715-724. DOI: 10.7693/wl20181104
    [5]WANG Tian-Yu, SONG Qi, HAN Wei. Spin-orbit torque[J]. PHYSICS, 2017, 46(5): 288-298. DOI: 10.7693/wl20170503
    [6]CT invariant quantum spin Hall effect in ferromagnetic graphene[J]. PHYSICS, 2010, 39(06): 416-418.
    [7]The spin-orbit interaction and spin current[J]. PHYSICS, 2008, 37(08): 594-599.
    [8]Experimental observation of relativistic effects on the electronic wavefunction in molecules[J]. PHYSICS, 2008, 37(08): 576-578.
    [9]Kitaev model and topological quantum phase transitions[J]. PHYSICS, 2007, 36(07): 511-515.
  • Cited by

    Periodical cited type(2)

    1. 王艳红,符鹏,卢红成. 一维量子反铁磁性材料研究简介. 铸造技术. 2023(01): 15-22 .
    2. 徐豪,承舒凡,鲍嵩,温锦生. 强关联材料霍尔热导率实验测量综述(英文). 物理学进展. 2022(05): 159-183 .

    Other cited types(9)

Catalog

    Article views (1113) PDF downloads (1790) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return