• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Zi-Jie, SUN Lu-Yan, ZOU Chang-Ling. Quantum fault tolerance technology based on superconducting quantum systems[J]. PHYSICS, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103
Citation: CHEN Zi-Jie, SUN Lu-Yan, ZOU Chang-Ling. Quantum fault tolerance technology based on superconducting quantum systems[J]. PHYSICS, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103

Quantum fault tolerance technology based on superconducting quantum systems

More Information
  • Received Date: October 22, 2023
  • Available Online: November 16, 2023
  • With the improvement of quantum control technology in superconducting systems, quantum error correction has seen rapid development. Recently, significant breakthroughs have been achieved on various platforms, even surpassing the break-even point of quantum error correction. However, to reach the final goal of fault tolerant quantum computation, it is crucial to further suppress the error through scaling up quantum systems. In this article we focus on superconducting quantum systems and present four approaches for implementing fault-tolerant error syndrome measurements. We then discuss the three key stages in achieving fault-tolerant quantum computation and the corresponding challenges at each stage. These challenges include surpassing the break-even point, reaching the fault-tolerant threshold, and implementing universal logical gates. To accomplish these goals, we classify three potential scaling-up schemes based on different forms of connectivity. We then summarize the experimental progress in quantum error correction and the exploration of connectivity. Finally, we address three key problems in this field.
  • [1]
    Preskill J. 2021, arXiv:2106.10522
    [2]
    Arute F, Arya K, Babbush R et al. Nature, 2019, 574(7779):505
    [3]
    Wu Y L, Bao W S, Cao S R et al. Phys. Rev. Lett., 2021, 127(18):180501
    [4]
    Zhang X, Jiang W J, Deng J F et al. Nature, 2022, 607:468
    [5]
    Shi Y H, Liu Y, Zhang Y R et al. Phys. Rev. Lett., 2023, 131(8):080401
    [6]
    Ni Z C, Li S, Deng X W et al. Nature, 2023, 616(7955):56
    [7]
    Acharya R, Aleiner I, Allen R et al. Nature, 2023, 614(7949):676
    [8]
    Cao S R, Wu B J, Chen F S et al. Nature, 2023, 619(7971):738
    [9]
    Li X G, Xu H K, Wang J H et al. 2023, arXiv:2301.12138
    [10]
    Tao Z Y, Huang W H, Niu J J et al. 2023, arXiv:2303.04582
    [11]
    Sheng C, Hou J Y, He X D et al. Phys. Rev. Lett., 2022, 128(8):083202
    [12]
    Evered S J, Bluvstein D, Kalinowski M et al. Nature, 2023, 622:268
    [13]
    Ryan-Anderson C, Bohnet J G, Lee K et al. Physical Review X, 2021, 11(4):041058
    [14]
    Zhang M X, Yuan X X, Li Y et al. Phys. Rev. Lett., 2022, 129(25):250501
    [15]
    Chen W T, Lu Y, Zhang S N et al. Nature Physics, 2023, 19:877
    [16]
    Deng Y H, Gu Y C, Liu H L et al. Phys. Rev. Lett., 2023, 131:150601
    [17]
    Shor P W. Physical Review A, 1995, 52(4):R2493
    [18]
    Chen Z J, Sun L Y, Zou C L. Science Bulletin, 2023, 68:961
    [19]
    Kim J S, Bishop L S, Córcoles A D et al. Physical Review A, 2021, 104(2):022609
    [20]
    Catelani G, Nigg S E, Girvin S M et al. Physical Review B, 2012, 86(18):184514
    [21]
    Xu Y, Chu J, Yuan J H et al. Phys. Rev. Lett., 2020, 125(24):240503
    [22]
    Ding Y S, Chong F T. Quantum Computer Systems:Research for Noisy Intermediate-scale Quantum Computers. Springer Nature, 2022
    [23]
    Wang C L, Li X G, Xu H K et al. npj Quantum Information, 2022, 8(1):3
    [24]
    Wu R B, Ding H J, Dong D Y et al. Physical Review A, 2019, 99(4):042327
    [25]
    Hashim A, Naik R K, Morvan A et al. Physical Review X, 2021, 11(4):041039
    [26]
    Endo S, Cai Z Y, Benjamin S C et al. Journal of the Physical Society of Japan, 2021, 90(3):032001
    [27]
    Girvin S M. SciPost Physics Lecture Notes, 2023:070
    [28]
    Terhal B M. Reviews of Modern Physics, 2015, 87(2):307
    [29]
    Zhao Y W, Ye Y S, Huang H L et al. Phys. Rev. Lett., 2022, 129(3):030501
    [30]
    Fowler A G. Physical Review A, 2011, 83(4):042310
    [31]
    Teoh J D, Winkel P, Babla H K et al. Proceedings of the National Academy of Sciences, 2023, 120(41):e2221736120
    [32]
    Gong M, Yuan X, Wang S Y et al. National Science Review, 2022, 9(1):nwab011
    [33]
    Breuckmann N P, Eberhardt J N. PRX Quantum, 2021, 2(4):040101
    [34]
    Nielsen M A, Chuang I. Quantum Computation and Quantum Information. Cambridge, 2002
    [35]
    Gottesman D. 1997, arXiv:quant-ph/9705052
    [36]
    Bombín H. 2013, arXiv:1311.0277
    [37]
    Cai W Z, Ma Y W, Wang W T et al. Fundamental Research, 2021, 1(1):50
    [38]
    Leghtas Z, Kirchmair G, Vlastakis B et al. Phys. Rev. Lett., 2013, 111(12):120501
    [39]
    Michael M H, Silveri M, Brierley R T et al. Physical Review X, 2016, 6(3):031006
    [40]
    Hu L, Ma Y W, Cai W Z et al. Nature Physics, 2019, 15(5):503
    [41]
    Gottesman D, Kitaev A, Preskill J. Physical Review A, 2001, 64(1):012310
    [42]
    Flühmann C, Nguyen T L, Marinelli M et al. Nature, 2019, 566(7745):513
    [43]
    Mezzadri M, Chiesa A, Lepori L et al. 2023, arXiv:2307.10761
    [44]
    Darmawan A S, Brown B J, Grimsmo A L et al. PRX Quantum, 2021, 2(3):030345
    [45]
    Shor P W. Fault-tolerant Quantum Computation. In:Proceedings of 37th Conference on Foundations of Computer Science, IEEE, 1996. PP. 56-65
    [46]
    Wang D S, Fowler A G, Hollenberg L C L. Physical Review A, 2011, 83(2):020302
    [47]
    Fowler A G, Mariantoni M, Martinis J M et al. Physical Review A, 2012, 86(3):032324
    [48]
    Gottesman D. An Introduction to Quantum Error Correction and Fault-tolerant Quantum Computation. In:Quantum Information Science and its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, 2010, 68:13
    [49]
    Knill E. 2004, arXiv:quant-ph/0402171
    [50]
    Steane A M. Phys. Rev. Lett., 1997, 78(11):2252
    [51]
    Dawson C M, Haselgrove H L, Nielsen M A. Physical Review A, 2006, 73(5):052306
    [52]
    Chao R, Reichardt B W. npj Quantum Information, 2018, 4(1):42
    [53]
    Chao R, Reichardt B W. Phys. Rev. Lett., 2018, 121(5):050502
    [54]
    Rosenblum S, Reinhold P, Mirrahimi M et al. Science, 2018, 361(6399):266
    [55]
    Ofek N, Petrenko A, Heeres R et al. Nature, 2016, 536(7617):441
    [56]
    Sivak V V,Eickbusch A,Royer B et al. Nature,2023,616(7955):50
    [57]
    Wilen C D, Abdullah S,Kurinsky N A et al. Nature, 2021, 594(7863):369
    [58]
    Martinis J M. npj Quantum Information, 2021, 7(1):90
    [59]
    McEwen M, Faoro L, Arya K et al. Nature Physics, 2022, 18(1):107
    [60]
    Xu Q, Seif A, Yan H X et al. Phys. Rev. Lett., 2022, 129(24):240502
    [61]
    Suzuki Y,Sugiyama T,Arai T et al. Q3de:A Fault-tolerant Quantum Computer Architecture for Multi-bit Burst Errors by Cosmic Rays. In:202255th IEEE/ACM International Symposium on Microarchitecture (MICRO), IEEE, 2022. pp.1110-1125
    [62]
    Siegel A, Strikis A, Flatters T et al. Quantum, 2023, 7:1065
    [63]
    Battistel F, Chamberland C, Johar K et al. 2023, arXiv:2303. 00054
    [64]
    Fowler A G, Whiteside A C, Hollenberg L C L. Physical Review A, 2012, 86(4):042313
    [65]
    Gicev S, Hollenberg L C L, Usman M. Quantum, 2023, 7:1058
    [66]
    Rosenberg D, Kim D, Das R et al. npj Quantum Information, 2017, 3(1):42
    [67]
    Eastin B, Knill E. Phys. Rev. Lett., 2009, 102(11):110502
    [68]
    Bravyi S, Kitaev A. Physical Review A, 2005, 71(2):022316
    [69]
    Meier A M, Eastin B, Knill E. 2012, arXiv:1204.4221
    [70]
    Haah J, Hastings M B. Quantum, 2018, 2:71
    [71]
    Campbell E T, Terhal B M, Vuillot C. Nature, 2017, 549(7671):172
    [72]
    Paetznick A,Reichardt B W. Phys. Rev. Lett.,2013,11(9):090505
    [73]
    Chamberland C, Cross A W. Quantum, 2019, 3:143
    [74]
    Bacon D. Physical Review A, 2006, 73(1):012340
    [75]
    Nickerson N H, Li Y, Benjamin S C. Nature Communications, 2013, 4(1):1756
    [76]
    Barredo D, Lienhard V, De Leseleuc S et al. Nature, 2018, 561(7721):79
    [77]
    Horsman D, Fowler A G, Devitt S et al. New Journal of Physics, 2012, 14(12):123011
    [78]
    Li L S, Zou C L, Albert V V et al. Phys. Rev. Lett., 2017, 119(3):030502
    [79]
    Muralidharan S, Li L S, Kim J et al. Scientific Reports, 2016, 6(1):20463
    [80]
    Gambetta J. Expanding the IBM Quantum Roadmap to Anticipate the Future of Quantum-centric Supercomputing. https://research.ibm.com/blog/ibm-quantum-roadmap-2025, 2022
    [81]
    Tillich J P, Zémor G. IEEE Transactions on Information Theory, 2013, 60(2):1193
    [82]
    Breuckmann N P, Eberhardt J N. IEEE Transactions on Information Theory, 2021, 67(10):6653
    [83]
    Cai W Z, Mu X H, Wang W T et al. 2023, arXiv:2302.13027
    [84]
    Song C, Xu K, Li H K et al. Science, 2019, 365(6453):574
    [85]
    Yao Y Y, Xiang L, Guo Z X et al. Nature Physics, 2023, 19:1459
    [86]
    Niu J J, Zhang L B, Liu Y et al. Nature Electronics, 2023, 6(3):235
    [87]
    Samutpraphoot P, Đorđević T, Ocola P L et al. Phys. Rev. Lett., 2020, 124(6):063602
    [88]
    Bluvstein D, Levine H, Semeghini G et al. Nature, 2022, 604(7906):451
    [89]
    Sørensen A, Mølmer K. Phys. Rev. Lett., 1999, 82(9):1971
    [90]
    Tuckett D K, Darmawan A S, Chubb C T et al. Physical Review X, 2019, 9(4):041031
  • Related Articles

    [1]LI Jin-Chao, ZHANG Jin, CHENG Ying, LIU Xiao-Jun. Acoustic Mie resonance and its applications[J]. PHYSICS, 2017, 46(11): 731-739. DOI: 10.7693/wl20171103
    [2]LIU Xiao-Zhou, QUAN Li, DING Er-Liang, LU Geng-Xi. Directional radiation of low-frequency acoustic waves[J]. PHYSICS, 2017, 46(10): 669-676. DOI: 10.7693/wl20171003
    [3]GUO Yang, LI Jian-Mei, LU Xing-Hua. Electron spin resonance scanning tunneling microscope[J]. PHYSICS, 2015, 44(03): 161-168. DOI: 10.7693/wl20150305
    [4]New advances in the theory and method of acoustic logging[J]. PHYSICS, 2011, 40(02): 88-98.
    [5]Nuclear magnetic resonance studies of the hydrated cobalt oxide superconductor NaxCoO2·1.3H2O[J]. PHYSICS, 2010, 39(12): 832-838.
    [6]CT invariant quantum spin Hall effect in ferromagnetic graphene[J]. PHYSICS, 2010, 39(06): 416-418.
    [7]Multiple superconducting gaps and anisotropic spin fluctuations in iron-pnictides revealed by nuclear magnetic resonance[J]. PHYSICS, 2009, 38(09): 632-638.
    [8]Spintronic materials, physics and device designs[J]. PHYSICS, 2008, 37(06): 392-399.
    [9]Dynamic mass density and acoustic metamaterials[J]. PHYSICS, 2007, 36(01): 1-6.
    [10]Spin polarized transport of an interacting quantum dot[J]. PHYSICS, 2003, 32(06).

Catalog

    Article views (370) PDF downloads (1561) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return