Processing math: 100%
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CUI Lian-Xiang, XU Kang, ZHANG Peng, SUN Chang-Pu. Quantum violation of Bell's inequality and its experimental test——on the Nobel Prize in Physics 2022[J]. PHYSICS, 2023, 52(1): 1-17. DOI: 10.7693/wl20230101
Citation: CUI Lian-Xiang, XU Kang, ZHANG Peng, SUN Chang-Pu. Quantum violation of Bell's inequality and its experimental test——on the Nobel Prize in Physics 2022[J]. PHYSICS, 2023, 52(1): 1-17. DOI: 10.7693/wl20230101

Quantum violation of Bell's inequality and its experimental test——on the Nobel Prize in Physics 2022

More Information
  • Received Date: November 11, 2022
  • Available Online: January 15, 2023
  • The Nobel Prize in Physics 2022 was awarded to Alain Aspect, John F. Clauser and Anton Zeilinger, for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science. Bell's inequality plays an indispensable role in the foundations of quantum mechanics and quantum information; its violation directly reveals the nonlocal nature of quantum mechanics.
    Clarifying some basic concepts, this paper briefly introduces the establishment of Bell's inequality and the relevant research on its experimental verification. In order to solve the EinsteinPodolsky-Rosen (EPR) paradox, John S. Bell proposed his inequality according to D. Bohm's theory of localized hidden variables. He found that the results from quantum mechanics for such correlations violated the inequality and then displayed a "spooky" long-range quantum correlation even over space-like distances. This long-range correlation appears to have faster-than-light "action at a distance", which is simply due to the obvious or potential use of the "wave-packet collapse" postulate. The EPR paper explicitly used this assumption to infer the physical reality elements of distant objects, thus questioned the completeness of quantum mechanics. We review the groundbreaking experiments on the violation of Bell's inequality conducted by Aspect, Clauser and Zeilinger, then furthermore recall the foundational contributions of Chinese physicists in creating entangled states and testing the violation of Bell's inequality. In an early pioneering experiment, Chien-Shiung Wu et al utilized positron annihilation to generate EPR photons; TsungDao Lee and Chen-Ning Yang proposed that generating two neutral K-mesons K0-ˉK0 to create EPR states; Yanhua Shih, Zhe-Yu Ou, Kun-Chi Peng, and others used various nonlinear optical crystals, including those discovered by Chuang-Tian Chen et al, to generate entangled photon pairs.
  • [1]
    Einstein A, Podolsky B, Rosen N. Physical Review, 1935, 47:777
    [2]
    Harrigan N, Spekkens R W. Foundations of Physics., 2010, 40(2):125
    [3]
    Bell J S. Physics Physique Fizika, 1964, 1:195
    [4]
    Bohm D. Physical Review, 1952, 85:166
    [5]
    Scientific Background on the Nobel Prize in Physics 2022. https://www.nobelprize.org
    [6]
    Schrödinger E. Mathematical Proceedings of the Cambridge Philosophical Society, 1935, 31(4):555
    [7]
    Bohm D. Quantum Theory. Englewood Cliffs, NJ:Prentice-Hall, 1951
    [8]
    Peres A. Foundations of Physics, 2005, 35(3):511
    [9]
    马克斯·雅默. 量子力学的哲学. 商务印书馆, 1989
    [10]
    Day T B. Physical Review, 1961, 121:1204
    [11]
    Clauser J F, Horne M A, Shimony A et al. Phys. Rev. Lett., 1969, 23:880
    [12]
    Wu C S, Shaknov I. Physical Review, 1950, 77:136
    [13]
    Kocher C A, Commins E D. Phys. Rev. Lett., 1967, 18:575
    [14]
    Freedman S J, Clauser J F. Phys. Rev. Lett., 1972, 28:938
    [15]
    Aspect A, Grangier P, Roger G. Phys. Rev. Lett., 1981, 47:460
    [16]
    Aspect A, Dalibard J, Roger G. Phys. Rev. Lett., 1982, 49:1804
    [17]
    Aspect A, Grangier P, Roger G. Phys. Rev. Lett., 1982, 49:91
    [18]
    Aspect A. Nature, 1999, 398:189
    [19]
    Shih Y H, Alley C O. Phys. Rev. Lett., 1988, 61:2921
    [20]
    Ou Z Y, Mandel L. Phys. Rev. Lett., 1988, 61:50
    [21]
    Ou Z Y, Pereira S F, Kimble H J et al. Phys. Rev. Lett., 1992, 68:3663
    [22]
    Kwiat P G, Mattle K, Weinfurter H et al. Phys. Rev. Lett., 1995, 75:4337
    [23]
    Weihs G, Jennewein T, Simon C et al. Phys. Rev. Lett., 1998, 81:5039
    [24]
    Bennett C H,Brassard G,Crépeau C et al. Phys. Rev. Lett., 1993, 70:1895
    [25]
    Bouwmeester D, Pan J W, Mattle K et al. Nature, 1997, 390:575
    [26]
    Davies P W, Brown J R. The Ghost in the Atom. Cambridge University Press, 1986
    [27]
    The BIG Bell Test Collaboration. Nature, 2018, 557:212
  • Related Articles

    [1]GE Wei-Kun. On the interpretation of the 2022 Nobel Prize in physics[J]. PHYSICS, 2022, 51(12): 821-826. DOI: 10.7693/wl20221202
    [2]XUE Peng. Quantum mechanical paradoxes and the second quantum revolution[J]. PHYSICS, 2022, 51(12): 811-820. DOI: 10.7693/wl20221201
    [3]CHENG  Song, CHEN Jing, WANG Lei. Quantum entanglement: from quantum states of matter to deep learning[J]. PHYSICS, 2017, 46(7): 416-423. DOI: 10.7693/wl20170702
    [4]ZHOU Tao, LONG Gui-Lu, FU Shuang-Shuang, LUO Shun-Long. Introduction to quantum correlations[J]. PHYSICS, 2013, 42(08): 544-551. DOI: 10.7693/wl20130802
    [5]An introduction to the theory of quantum entanglement[J]. PHYSICS, 2010, 39(12): 816-824.
    [6]Multipartite entangled optical fields with continuous variables and their applications in quantum computation[J]. PHYSICS, 2010, 39(11): 746-752.
    [7]Quantum correlation[J]. PHYSICS, 2010, 39(11): 729-736.
    [8]Brief introduction to Bose-Einstein condensation with an entangled order parameter[J]. PHYSICS, 2007, 36(01): 15-16.
    [9]Experimental entanglement distillation of two-qubit mixed states under local operations[J]. PHYSICS, 2006, 35(11): 913-916.
    [10]New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13km[J]. PHYSICS, 2005, 34(10): 701-707.
  • Cited by

    Periodical cited type(4)

    1. 尤世欣,袁晨智,金锐博. Bell不等式的直观解释与研究进展. 量子光学学报. 2024(02): 7-23 .
    2. 尤世欣,袁晨智,金锐博. Bell不等式的直观解释与研究进展. 量子光学学报. 2024(03): 9-25 .
    3. 孙昌璞. 基础科学研究中实验与理论关系探析. 中国科学院院刊. 2024(12): 2016-2026 .
    4. 蔡铁权,杨亚芳. 现代物理学的学科核心素养蕴涵. 物理教学. 2023(06): 2-7 .

    Other cited types(2)

Catalog

    Article views (1386) PDF downloads (1876) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return