• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13km[J]. PHYSICS, 2005, 34(10): 701-707.
Citation: New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13km[J]. PHYSICS, 2005, 34(10): 701-707.

New progress on experimental quantum cryptography——experimental free-space distribution of entangled photon pairs over 13km

More Information
  • Published Date: October 19, 2005
  • We have experimentally realised free\|space distribution of entangled photon pairs through a noisy ground atmosphere of 13km. It is shown that the desired entanglement can still survive after both photons have traversed a distance beyond the effective thickness of the aerosphere. We observe a spacelike separated violation of the Bell\|Clauser\|Horne\|Shimony inequality of 2.45±0.09. With this source we have demonstrated the BB84\|Ekert91 quantum cryptography protocol. Our experiment has shown for the first time the feasibility of using entangled photons for ground\|to\|satellite quantum communication, and presents a significant step towards satellite\|based global quantum communication in the future. We first review the rapid progress in quantum cryptography over recent years and then describe our experiment in detail.
  • Related Articles

    [1]CUI Lian-Xiang, XU Kang, ZHANG Peng, SUN Chang-Pu. Quantum violation of Bell's inequality and its experimental test——on the Nobel Prize in Physics 2022[J]. PHYSICS, 2023, 52(1): 1-17. DOI: 10.7693/wl20230101
    [2]GE Wei-Kun. On the interpretation of the 2022 Nobel Prize in physics[J]. PHYSICS, 2022, 51(12): 821-826. DOI: 10.7693/wl20221202
    [3]XUE Peng. Quantum mechanical paradoxes and the second quantum revolution[J]. PHYSICS, 2022, 51(12): 811-820. DOI: 10.7693/wl20221201
    [4]JIANG Wen-Jie, DENG Dong-Ling. Neural network quantum states and their applications[J]. PHYSICS, 2021, 50(2): 76-83. DOI: 10.7693/wl20210202
    [5]LONG Gui-Lu, SHENG Yu-Bo, YIN Liu-Guo. Progress and applications of quantum communications[J]. PHYSICS, 2018, 47(7): 413-417. DOI: 10.7693/wl20180701
    [6]CHEN Jin-Jun, WU Ling-An, FAN Heng. Quantum and classical cryptography[J]. PHYSICS, 2017, 46(3): 137-144. DOI: 10.7693/wl20170301
    [7]An introduction to the theory of quantum entanglement[J]. PHYSICS, 2010, 39(12): 816-824.
    [8]Experimental entanglement distillation of two-qubit mixed states under local operations[J]. PHYSICS, 2006, 35(11): 913-916.
    [9]Continuous variable quantum key distribution[J]. PHYSICS, 2006, 35(09): 785-790.
    [10]Quantum communication[J]. PHYSICS, 2002, 31(06).

Catalog

    Article views (60) PDF downloads (2956) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return