• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
MENG Jing-Yao, MA Tian-Xing, LIN Hai-Qing. Computational condensed matter physics: a brief introduction[J]. PHYSICS, 2022, 51(9): 602-610. DOI: 10.7693/wl20220902
Citation: MENG Jing-Yao, MA Tian-Xing, LIN Hai-Qing. Computational condensed matter physics: a brief introduction[J]. PHYSICS, 2022, 51(9): 602-610. DOI: 10.7693/wl20220902

Computational condensed matter physics: a brief introduction

More Information
  • Received Date: August 21, 2022
  • Available Online: October 24, 2022
  • Using the computer, combined with numerical methods and software, a field named computational physics has developed rapidly in recent years. In this field, scientists have successfully solved a large number of difficult problems in traditional physics regarding materials design and physical principles, establishing a bridge between theory and experiment. We briefly review the history and development of computational physics from its beginning, then focus on its applications in condensed matter physics. Numerical methods based on exact diagonalization, the numerical renormalization group, Monte Carlo simulation, dynamic mean field theory, etc., are briefly described. The future of computational condensed matter physics is also discussed in terms of exploring novel physical phenomena and developing computational methods.
  • [1]
    Metropolis N, Rosenbluth A W, Rosenbluth M N et al. The Jour‐ nal of Chemical Physics, 1953, 21: 1087
    [2]
    Fermi E, Pasta P, Ulam S et al. 1955, DOI: 10.2172/4376203
    [3]
    Wilson K G. Scientific American, 1979, 241: 158
    [4]
    Wilson K G. Rev. Mod. Phys., 1975, 47: 773
    [5]
    Kang K J, Cheng J P, Chen Y H et al. Journal of Physics: Confer‐ ence Series, 2010, 203: 012028
    [6]
    Bernaschi M, Bisson M, Fatica M et al. The European Physical Journal Special Topics, 2012, 210: 17
    [7]
    Katsikas G, Sarafidis C, Kioseoglou J. physica status solidi (b), 2021, 258: 2000600
    [8]
    国家自然科学基金委员会, 中国科学院. 中国学科发展战略: 计算物理学. 北京: 科学出版社, 2022
    [9]
    Senthil T, Vishwanath A,Balents L et al. Science, 2004, 303: 1490
    [10]
    Lin H, Gubernatis J, Gould H et al. Computers in Physics, 1993, 7: 400
    [11]
    Hohenberg P, Kohn W. Phys. Rev., 1964, 136: B864
    [12]
    Kohn W, Sham L J. Phys. Rev., 1965, 140: A1133
    [13]
    Kalos M H, Levesque D, Verlet L. Phys. Rev. A, 1974, 9: 2178
    [14]
    Suzuki M, Miyashita S, Kuroda A. Progress of Theoretical Phys‐ ics, 1977, 58: 1377
    [15]
    Trotter H F. Proceedings of the American Mathematical Society, 1959, 10: 545
    [16]
    Handscomb D C. Mathematical Proceedings of the Cambridge Philosophical Society, 1962, 58: 594
    [17]
    Evertz H G, Lana G, Marcu M. Phys. Rev. Lett., 1993, 70: 875
    [18]
    Blankenbecler R, Scalapino D J, Sugar R L. Phys. Rev. D, 1981, 24: 2278
    [19]
    Berg E, Metlitski M A, Sachdev S. Science, 2012, 338: 1606
    [20]
    White S R. Phys. Rev. Lett., 1992, 69: 2863
    [21]
    Schollwöck U. Rev. Mod. Phys., 2005, 77: 259
    [22]
    Levin M, Nave C P. Phys. Rev. Lett., 2007, 99: 120601
    [23]
    Orús R. Nature Reviews Physics, 2019, 1: 538
    [24]
    Metzner W, Vollhardt D. Phys. Rev. Lett., 1989, 62: 1066
    [25]
    Georges A, Kotliar G. Phys. Rev. B, 1992, 45: 6479
    [26]
    Kotliar G, Savrasov S Y, Haule K et al. Rev. Mod. Phys., 2006, 78: 865
    [27]
    Georges A, Kotliar G, Krauth W et al. Rev. Mod. Phys., 1996, 68: 13
    [28]
    Zhang Y X, Chiu W T, Costa N C et al. Phys. Rev. Lett., 2019, 122: 077602
    [29]
    Han Z, Kivelson S A, Yao H. Phys. Rev. Lett., 2020, 125: 167001
    [30]
    Clark L, Abdeldaim A H. Annual Review of Materials Research, 2021, 51: 495
    [31]
    Hosseini M V, Askari M. Scientific Reports, 2021, 11: 22206
    [32]
    El-Ganainy R, Makris K G, Khajavikhan M et al. Nature Phys‐ ics, 2018, 14: 11
    [33]
    Xu Z, Chen S. Phys. Rev. B, 2020, 102: 035153
    [34]
    Gong Z, Ashida Y, Kawabata K et al. Phys. Rev. X, 2018, 8: 031079
    [35]
    Zhang X Z, Song Z. Phys. Rev. B, 2020, 102: 174303
    [36]
    Mondaini R, Tarat S, Scalettar R T. Science, 2022, 375: 418
    [37]
    Aoki H, Tsuji N, Eckstein M et al. Rev. Mod. Phys., 2014, 86: 779
  • Related Articles

    [1]QIN Ya-Yuan, SHEN Yao, CHEN Gang, ZHAO Jun. Magnetic frustration and quantum fluctuation in rare-earth triangular-lattice magnets[J]. PHYSICS, 2021, 50(7): 454-462. DOI: 10.7693/wl20210703
    [2]LIU Zheng-Xin, WANG Xiao-Qun, ZHANG Qing-Ming. Spring in the desert of magnets——quantum spin liquids[J]. PHYSICS, 2021, 50(7): 429-442. DOI: 10.7693/wl20210701
    [3]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [4]CHEN Shuang, WU Jia-Min, SHI Yu-Sheng. General introduction of 3D printing materials and their applications[J]. PHYSICS, 2018, 47(11): 715-724. DOI: 10.7693/wl20181104
    [5]WANG Tian-Yu, SONG Qi, HAN Wei. Spin-orbit torque[J]. PHYSICS, 2017, 46(5): 288-298. DOI: 10.7693/wl20170503
    [6]CT invariant quantum spin Hall effect in ferromagnetic graphene[J]. PHYSICS, 2010, 39(06): 416-418.
    [7]The spin-orbit interaction and spin current[J]. PHYSICS, 2008, 37(08): 594-599.
    [8]Experimental observation of relativistic effects on the electronic wavefunction in molecules[J]. PHYSICS, 2008, 37(08): 576-578.
    [9]Kitaev model and topological quantum phase transitions[J]. PHYSICS, 2007, 36(07): 511-515.
  • Cited by

    Periodical cited type(2)

    1. 王艳红,符鹏,卢红成. 一维量子反铁磁性材料研究简介. 铸造技术. 2023(01): 15-22 .
    2. 徐豪,承舒凡,鲍嵩,温锦生. 强关联材料霍尔热导率实验测量综述(英文). 物理学进展. 2022(05): 159-183 .

    Other cited types(9)

Catalog

    Article views (600) PDF downloads (3060) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return