• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHOU Xiao-Rong, HUANG Guang-Shun, LI Hai-Bo. The anomalous magnetic moment of the muon, and the Beijing Spectrometer experiment[J]. PHYSICS, 2021, 50(8): 535-541. DOI: 10.7693/wl20210805
Citation: ZHOU Xiao-Rong, HUANG Guang-Shun, LI Hai-Bo. The anomalous magnetic moment of the muon, and the Beijing Spectrometer experiment[J]. PHYSICS, 2021, 50(8): 535-541. DOI: 10.7693/wl20210805

The anomalous magnetic moment of the muon, and the Beijing Spectrometer experiment

More Information
  • Received Date: February 17, 2021
  • Published Date: August 11, 2021
  • The latest experimental measurements of the anomalous magnetic moment of the muon deviates from the theoretical prediction by 4.2 sigma, which provides essential evidence for the existence of new physics beyond the Standard Model. To confirm this, however, further improvements in the precision for both experimental measurements and theoretical predictions are necessary. The Beijing Spectrometer experiment at the Beijing Electron-Positron Collider facility, operating in the transition energy range between perturbative and non-perturbative quantum chromodynamics, is an ideal playground for the study of strong interactions in the low energy region; it is an important contributor to the theoretical prediction of the anomalous magnetic moment by providing a stringent constraint on the dominant theoretical uncertainty——the hadronic vacuum polarization. In this paper, the current status of experimental measurements and theoretical prediction are reviewed, and future expectations are assessed.
  • Related Articles

    [1]QIN Ya-Yuan, SHEN Yao, CHEN Gang, ZHAO Jun. Magnetic frustration and quantum fluctuation in rare-earth triangular-lattice magnets[J]. PHYSICS, 2021, 50(7): 454-462. DOI: 10.7693/wl20210703
    [2]LIU Zheng-Xin, WANG Xiao-Qun, ZHANG Qing-Ming. Spring in the desert of magnets——quantum spin liquids[J]. PHYSICS, 2021, 50(7): 429-442. DOI: 10.7693/wl20210701
    [3]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [4]CHEN Shuang, WU Jia-Min, SHI Yu-Sheng. General introduction of 3D printing materials and their applications[J]. PHYSICS, 2018, 47(11): 715-724. DOI: 10.7693/wl20181104
    [5]WANG Tian-Yu, SONG Qi, HAN Wei. Spin-orbit torque[J]. PHYSICS, 2017, 46(5): 288-298. DOI: 10.7693/wl20170503
    [6]CT invariant quantum spin Hall effect in ferromagnetic graphene[J]. PHYSICS, 2010, 39(06): 416-418.
    [7]The spin-orbit interaction and spin current[J]. PHYSICS, 2008, 37(08): 594-599.
    [8]Experimental observation of relativistic effects on the electronic wavefunction in molecules[J]. PHYSICS, 2008, 37(08): 576-578.
    [9]Kitaev model and topological quantum phase transitions[J]. PHYSICS, 2007, 36(07): 511-515.
  • Cited by

    Periodical cited type(2)

    1. 王艳红,符鹏,卢红成. 一维量子反铁磁性材料研究简介. 铸造技术. 2023(01): 15-22 .
    2. 徐豪,承舒凡,鲍嵩,温锦生. 强关联材料霍尔热导率实验测量综述(英文). 物理学进展. 2022(05): 159-183 .

    Other cited types(9)

Catalog

    Article views (85) PDF downloads (1268) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return