• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Lei, LIU Jin-Guo. Differentiate everything: a lesson from deep learning[J]. PHYSICS, 2021, 50(2): 69-75. DOI: 10.7693/wl20210201
Citation: WANG Lei, LIU Jin-Guo. Differentiate everything: a lesson from deep learning[J]. PHYSICS, 2021, 50(2): 69-75. DOI: 10.7693/wl20210201

Differentiate everything: a lesson from deep learning

More Information
  • Received Date: December 08, 2020
  • Published Date: February 11, 2021
  • Deep learning taught us a new way to play with computers: compose differentiable components into a computer program, then tune its parameters via gradient optimization until it achieves what we want. This is the key idea of differentiable programming. The rapid development of deep learning technology offers convenient tools for differentiable programming, and also opens a new frontier for computational physics. This article introduces the basic notion of differentiable programming and its physics applications including modeling, optimization, control, and inverse design.
  • Related Articles

    [1]REN Yuan, LUO Ya-Qiao, SHI Si-Qi. Computational physics in lithium batteries[J]. PHYSICS, 2022, 51(6): 384-396. DOI: 10.7693/wl20220602
    [2]LI Ying, SUN Chang-Pu. Universal quantum computer and fault-tolerant quantum computation——concepts, status and prospects[J]. PHYSICS, 2019, 48(8): 477-487. DOI: 10.7693/wl20190801
    [3]WANG Lu. The application of deep learning in high energy physics[J]. PHYSICS, 2017, 46(9): 597-605. DOI: 10.7693/wl20170904
    [4]Quantum computation with superconducting circuits[J]. PHYSICS, 2010, 39(12): 810-815.
    [5]Scientific computing for laser fusion[J]. PHYSICS, 2009, 38(08): 559-568.
    [6]Scientific computing aplication codes[J]. PHYSICS, 2009, 38(08): 552-558.
    [7]A brief report on scientific computing[J]. PHYSICS, 2009, 38(08): 545-551.
    [8]COMPUTER AUXILIARY TEACHING IN UNIVERSITY PHYSICS TEACHING[J]. PHYSICS, 2003, 32(01).
    [9]Solid-state quantum computing[J]. PHYSICS, 2002, 31(12).
    [10]Forefront of computational physics and its intercross with computational technology[J]. PHYSICS, 2002, 31(07).
  • Cited by

    Periodical cited type(5)

    1. 王磊,姚裕贵. 凝聚态物理计算方法. 中国科学:物理学 力学 天文学. 2024(04): 14-17 .
    2. 邓天牧,黄钟民,彭林欣. 基于自动微分的桁架结构材料非线性分析. 广西大学学报(自然科学版). 2024(02): 269-279 .
    3. 王磊,张潘. 写给物理学家的生成模型. 物理. 2024(06): 368-378 . 本站查看
    4. 张晓旭,高振涛,吴磊,李鑫,卢明静. 基于混合量子-经典神经网络模型的股价预测. 电子科技大学学报. 2022(01): 16-23 .
    5. 王凌霄,庞龙刚,周凯. 深度学习在高能核物理中的应用. 中国科学:物理学 力学 天文学. 2022(05): 20-37 .

    Other cited types(0)

Catalog

    Article views (443) PDF downloads (2321) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return