• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
MA Yu-Han, DONG Hui, SUN Chang-Pu. Can we build a heat engine with both high power and high efficiency?——The development and prospects of finite-time thermodynamics[J]. PHYSICS, 2021, 50(1): 1-9. DOI: 10.7693/wl20210101
Citation: MA Yu-Han, DONG Hui, SUN Chang-Pu. Can we build a heat engine with both high power and high efficiency?——The development and prospects of finite-time thermodynamics[J]. PHYSICS, 2021, 50(1): 1-9. DOI: 10.7693/wl20210101

Can we build a heat engine with both high power and high efficiency?——The development and prospects of finite-time thermodynamics

More Information
  • Received Date: December 07, 2020
  • Published Date: January 11, 2021
  • Efficiency and power are the two main parameters to evaluate the performance of heat engines. The Carnot efficiency is the upper limit in the efficiency of a reversible heat engine. Due to the requirement of infinite operation time in quasi-static processes, the output power of a reversible heat engine approaches zero, with no practical value. Therefore, how to improve the efficiency of a heat engine while maintaining its power for practical purposes is an important scientific challenge in thermodynamics. Finite time thermodynamics, born in the first half of the last century, is developing rapidly to provide the necessary scientific support for this challenge. This paper sketches the early development and present status of finite-time thermodynamics, focusing on current investigations on the power—efficiency trade-off relation for finite-time heat engines. To explore the relation between this trade-off and the irreversibility of finite-time thermodynamic cycles, we introduce our recent theoretical and experimental studies on the irreversible entropy generation in finite-time isothermal processes. Possible future trends and applications of finite-time thermodynamics and the non-equilibrium physics of finite systems are also previewed.
  • Related Articles

    [1]LUO Xiao-Feng, LIU Feng, XU Nu. Quark soup cooking at trillions of degrees: experimental study on the phase structure of nuclear matter and the quantum chromodynamics critical point[J]. PHYSICS, 2021, 50(2): 98-107. DOI: 10.7693/wl20210205
    [2]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [3]LU Kun-Quan, CAO Ze-Xian. On the novel principle of earthquake and its predictability[J]. PHYSICS, 2018, 47(4): 211-229. DOI: 10.7693/wl20180402
    [4]LUO Peng, WANG Si-Cheng, HU Zheng-Guo, XU Hu-Shan, ZHAN Wen-Long. Accelerator driven sub-critical systems——a promising solution for cycling nuclear fuel[J]. PHYSICS, 2016, 45(9): 569-577. DOI: 10.7693/wl20160903
    [5]Chen Chien-chih, John B. Rundle, Donald L. Turcotte , YIN Xiang-Chu. Theory of critical transitions helps understand seismicity-based earthquake forecasting techniques[J]. PHYSICS, 2013, 42(05): 329-333. DOI: 10.7693/wl20130503
    [7]On the plastic deformation mechanism of metallic glasses[J]. PHYSICS, 2010, 39(09): 628-630.
    [8]Multiple superconducting gaps and anisotropic spin fluctuations in iron-pnictides revealed by nuclear magnetic resonance[J]. PHYSICS, 2009, 38(09): 632-638.
    [9]The state of fluids deep inside the Earth and its significance in the physics of earthquake sources[J]. PHYSICS, 2009, 38(04): 238-247.
    [10]Quantitative prediction of critical size for the formation of semiconductor quantum dots[J]. PHYSICS, 2006, 35(06): 447-450.

Catalog

    Article views (399) PDF downloads (1475) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return