• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHU Guo-Yi, WANG Rui-Rui, ZHANG Guang-Ming. Majorana fermions and topological quantum computation[J]. PHYSICS, 2017, 46(3): 154-167. DOI: 10.7693/wl20170303
Citation: ZHU Guo-Yi, WANG Rui-Rui, ZHANG Guang-Ming. Majorana fermions and topological quantum computation[J]. PHYSICS, 2017, 46(3): 154-167. DOI: 10.7693/wl20170303

Majorana fermions and topological quantum computation

More Information
  • Received Date: August 22, 2016
  • Published Date: March 11, 2017
  • In 1937, Majorana noticed that in a different representation the relativistic wave equation for electrons proposed by Dirac has a solution describing chargeless neutral fermions,which have completely different properties from Dirac fermions. In particle physics, the search for such Majorana fermions is still being pursued, while in condensed matter physics it has already been found that certain kinds of quasiparticles in the low-energy excitations of topological superconductors and fractional quantum Hall effects share a similar behavior to Majorana fermions.In particular, the vortex excitations in two-dimensional topological superconductors include zero-energy Majorana fermion modes, which exhibit non-abelian anyonic statistical properties under exchange operations, leading to the possibility of topological quantum computation. In this article we will review the physical models and realization of Majorana fermions, and then discuss the corresponding implementation of topological quantum computation.
  • [1]
    Wilczek F. Nature Physics,2009,5(9):614
    [2]
    Elliott S R,Franz M. Reviews of Modern Physics,2015,87(1):137
    [3]
    Kitaev AY. Physics-Uspekhi,2001,44(10S):131
    [4]
    Sarma S D,Freedman M,Nayak C. Majorana Zero Modes and Topological Quantum Computation. arXiv:1501.02813,2015
    [5]
    Mourik V,Zuo K,Frolov S M et al. Science,2012,336(6084):1003
    [6]
    Deng M T,Yu C L,Huang G Y et al. Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device.arXiv:1204.4130,2012
    [7]
    Fu L,Kane C L. Physical Review Letters,2008,100(9):096407
    [8]
    Sarma S D,Freedman M,Nayak C. Physics Today,2006,59(7):32
    [9]
    Kitaev AY. Annals of Physics,2003,303(1):2
    [10]
    Alicea J,Oreg Y,Refael G et al. Nature Physics,2011,7(5):412
    [11]
    Alicea J. Reports on Progress in Physics,2012,75(7):076501
    [12]
    Georgiev L S. Physical Review B,2006,74(23):235112
    [13]
    Bravyi S,Kitaev A. Physical Review A,2005,71(2):022316
    [14]
    Karzig T,Oreg Y,Refael G et al. arXiv:1511.05161
  • Related Articles

    [1]CHEN Zi-Jie, SUN Lu-Yan, ZOU Chang-Ling. Quantum fault tolerance technology based on superconducting quantum systems[J]. PHYSICS, 2023, 52(11): 751-760. DOI: 10.7693/wl20231103
    [2]YU Hai-Feng. Superconducting quantum cloud computing[J]. PHYSICS, 2023, 52(11): 744-750. DOI: 10.7693/wl20231102
    [3]ZHENG Wen, YU Yang. Core devices for superconducting quantum computing[J]. PHYSICS, 2023, 52(11): 731-743. DOI: 10.7693/wl20231101
    [4]LI Ying, SUN Chang-Pu. Universal quantum computer and fault-tolerant quantum computation——concepts, status and prospects[J]. PHYSICS, 2019, 48(8): 477-487. DOI: 10.7693/wl20190801
    [5]WAN Xin, WANG Zheng-Han, YANG Kun. From the fractional quantum Hall effect to topological quantum computation[J]. PHYSICS, 2013, 42(08): 558-566. DOI: 10.7693/wl20130804
    [6]LU Xin. Exploring heavy-Fermion systems under pressure[J]. PHYSICS, 2013, 42(06): 378-388. DOI: 10.7693/wl20130602
    [7]Quantum computation with superconducting circuits[J]. PHYSICS, 2010, 39(12): 810-815.
    [8]Multipartite entangled optical fields with continuous variables and their applications in quantum computation[J]. PHYSICS, 2010, 39(11): 746-752.
    [9]Nongeometric conditional phase shift via adiabatic evolution of dark eigenstate: a new approach to quantum computation[J]. PHYSICS, 2006, 35(07): 541-542.
    [10]Solid-state quantum computing[J]. PHYSICS, 2002, 31(12).

Catalog

    Article views (435) PDF downloads (2945) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return