• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
WANG Hai-Long, YE Yu, ZHAO Jian-Hua, ZHANG Xiang. First demonstration of the electrical control of the valley degree of freedom[J]. PHYSICS, 2016, 45(8): 516-519. DOI: 10.7693/wl20160805
Citation: WANG Hai-Long, YE Yu, ZHAO Jian-Hua, ZHANG Xiang. First demonstration of the electrical control of the valley degree of freedom[J]. PHYSICS, 2016, 45(8): 516-519. DOI: 10.7693/wl20160805

First demonstration of the electrical control of the valley degree of freedom

More Information
  • Received Date: April 26, 2016
  • Published Date: August 11, 2016
  • Electrical control of the charge and spin degrees of freedom is the foundation of contemporary micro- and nano-electronics, and spintronics. However, the effective electrical control of the electron valley degree of freedom in solids is still under intensive research. This article presents our recent demonstration of the electrical control of the valley polarization in a pn junction consisting of a monolayer transition metal dichalcogenide and a magnetic semiconductor (Ga,Mn)As, via electrical spin injection.
  • [1]
    Sun J T et al. Acta Phys. Sin.,2015,64:187301
    [2]
    Zhu ZWet al. Nature Phys.,2012,8:89
    [3]
    Gunlycke D et al. Phys. Rev. Lett.,2011,106:136806
    [4]
    Wu Z H et al. Phys. Rev. Lett.,2011,106:176802
    [5]
    Jiang Y J et al. Phys. Rev. Lett.,2013,110:046601
    [6]
    Xiao D et al. Phys. Rev. Lett.,2012,108:196802
    [7]
    Mak K F et al. Science,2014,344:1489
    [8]
    Fabian J et al. Acta Phys. Slov.,2007,57:565
    [9]
    Ohno Y et al. Nature,1999,402:790
    [10]
    Dietl T et al. Rev. Mod. Phys.,2014,86:187
    [11]
    Jungwirth T et al. Rev. Mod. Phys.,2014,86:855
    [12]
    Chiba D et al. Appl. Phys. Lett.,2006,89:162505
    [13]
    Chiba D et al. Nature,2008,455:515
    [14]
    Nishitani Y et al. Phys. Rev. B,2010,81:045208
    [15]
    Endo M et al. Appl. Phys. Lett.,2010,96:062515
    [16]
    Chernyshov A et al. Nature Phys.,2009,5:656
    [17]
    Chen L et al. Nano Lett.,2011,11:2584
    [18]
    Chen L et al. Appl. Phys. Lett.,2009,95:182505
    [19]
    Yu X Z et al. Nano Lett.,2012,12:5436
    [20]
    Yu X Z et al. Nano Lett.,2013,13:1572
    [21]
    Nie S H et al. Phys. Rev. Lett.,2013,111:027203
    [22]
    Wang X L et al. Adv. Mater.,2015,27:8043
    [23]
    Ye Y,Xiao J,Wang H L et al. Nature Nanotech.,2016,11:598
  • Related Articles

    [1]HE Ling-Xiang. New applications of atomic clocks for precision measurement[J]. PHYSICS, 2023, 52(7): 476-481. DOI: 10.7693/wl20230705
    [2]WANG Ke-Lin, GAO Xian-Long, CAO Ze-Xian. Gauge transformation of phase space for quantized systems[J]. PHYSICS, 2021, 50(3): 177-181. DOI: 10.7693/wl20210307
    [3]SHAO Lei, RUAN Qi-Feng, WANG Jian-Fang, LIN Hai-Qing. Localized surface plasmons[J]. PHYSICS, 2014, 43(05): 290-298. DOI: 10.7693/wl20140501
    [4]Z2 topological invariant and topological insulators[J]. PHYSICS, 2011, 40(07): 462-468.
    [5]Catastrophic failure in solids[J]. PHYSICS, 2011, 40(05): 281-288.
    [6]Gauge theory and financial market model[J]. PHYSICS, 2006, 35(09): 740-749.
    [7]Luminescence of localized\|electron\|state ensemble[J]. PHYSICS, 2006, 35(08): 659-665.
    [8]Quark dyanmic model (QCD) and gauge field theory[J]. PHYSICS, 2006, 35(04): 340-344.
    [9]ANOTHER GREAT ACHIEVEMENT OF C.N.YANG——THE QUANTUM NON-INTEGRABLE PHASE FACTOR AND GLOBAL FORMALISM FOR GAUGE FIELD[J]. PHYSICS, 2003, 32(03).
    [10]Gauge field theory in china --in honor of the 80th birthday of professor C.N.Yang[J]. PHYSICS, 2002, 31(04).

Catalog

    Article views (156) PDF downloads (1718) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return