Structural evolutions of perovskites under high pressure and high temperature

ZHAO J† ROSS N L ANGEL R J

Crystallography Laboratory, Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

Abstract Recent high-pressure single-crystal X-ray diffraction experiments show that when the octahedral BO₆ group is more compressible than the AO₁₂ polyhedra in certain ABO₃ or Pm̅₃m perovskites β₁ > β₂, then the BO₆ octahedra becomes less tilted and the structure evolves towards a high-symmetry configuration as the pressure increases. In other perovskites the BO₆ octahedra are less compressible than the AO₁₂ polyhedra β₂ < β₁ and the structure then becomes more tilted with increasing pressure. A new model based on the assumption of bond-valence matching in both the A and the B sites of a perovskite provides a simple and universal rule that describes the dominant mechanism governing pressure-induced octahedral tilts and distortions in both polyhedral AO₁₂ and BO₆. By the relation β₁/β₂ = M₁/M₂ where M₁ is a site parameter calculated by using bond-valence valence parameters and crystal structural data under ambient conditions the high-pressure behavior can be correctly predicted. A general law that predicts the variation in transition temperature of tilt transitions in perovskite has been deduced in perovskites with M₁/M₂ > 1 the temperature Tc of zone-boundary phase transitions will decrease with increasing pressure dTc/dP < 0 while with M₁/M₂ < 1 dTc/dP > 0.

Keywords perovskite, high pressure, high temperature, bond-valence model, phase transition
物理构如图所示。由于八面体之间相对倾斜的多样性，以及多面体畸变使钙钛矿成为一类具有各种优异物理性质（光、电、磁等）的重要材料。另外，地球下地幔大部分是由正交晶系钙钛矿构成，其高温高压结构变化的研究成为了解地球深部结构不可缺少的部分。因此，钙钛矿一直是材料科学和地球科学研究的重要对象之一。微小的八面体倾斜和畸变能够对钙钛矿的物理性质产生很大的影响，高温高压下钙钛矿结构变化规律的认识有助于了解结构和性质之间的关系。本研究将主要介绍正交晶系和相关钙钛矿的高温高压结构变化的最新研究进展。

图-(a)原型立方钙钛矿(ABO₃₆),氧离子位于八面体顶端,离子位于八面体中心(未画出),离子(球体)位于八面体之间的空隙中心。(b)八面体的倾斜衍生出种不同结构的钙钛矿,其中正交晶系结构为最大一类倾斜系统,高压导致钙钛矿结构变化表现为八面体倾斜随压力增加或降低;八面体倾斜导致氧离子偏离规则十二面体。图中实心和空心箭头分别标出高压下氧离子位移方向,对应键角!和!。常压下,当温度增加,低对称性结构的钙钛矿通过八面体倾斜减小向高对称性结构转变,经过一系列中间相,最终转变成八面体倾斜为零的原型立方钙钛矿。晶体结构变化表现出具有所谓的“区域边界”相变(91,5 A /@’,=*BC #!*D5 “B*,D)E @),下面简称@)相变)特征。

代,7*H*B*等人提出了一个“一般性”规律,认为钙钛矿的@)相变温度一般关系为%=,%/#,即相变温度随压力增加而增加。然而,近来一些实验和理论研究表明,一些氧化物钙钛矿的相变温度和压力显示出不同的关系,暗示着和反号,说明这些不同于“一般性”规律的相变具有不同热力学基础。一般而言,在外静水压作用下,晶体中原子或离子之间的距离会随压力增加而缩短,或化学键长缩短,化学键之间的角度即键角或增加或减小,而温度增加则一般导致晶体体积膨胀或晶体中原子或离子间距变长,温度和压力的作用相反,这也就是“一般性”规律所暗示的。为什么有的钙钛矿与“一般性”规律不相符,这是否暗示温度和压力作用相同?单纯地从离子间距的变化是很难解释这个现象的。为了回答这些根本性的问题,我们首先必须了解钙钛矿的高压压缩行为。值得强调的是,由于分辨的局限性,高压粉末射线衍射技术一般很难从实验误差中分辨出这些微小的结构变化,但近年来,高压单晶射线衍射技术不断地得到改进,特别是针对高压测量的要求优化了实验设备和方法,使得从原子尺度上探测八面体微小倾斜和畸变及相变规律成为可能。早期实验发现,高压下正交晶系钙钛矿的结构变化主要呈两种不同的变化趋势,但一直不清楚什么成分的钙钛矿会出现哪一种变化。第一种趋势是压力导致八面体倾斜增加,如图-(c),键角和变小,偏离LGO,畸变增加,八面体倾斜增加导致离子与其两个氧离子构成的多面体畸变也增加,即偏离立方钙钛矿中的规则十二面体[图-(e)],换句话说,压力导致晶体结构向低对称性结构变化。第二种趋势与第一种相反,如图-(d),压力导致八面体倾斜降低,键角趋向于LGO,多面体畸变则减小,即压力将导致晶体结构向高对称性结构演变。高压结构变化与八面体和多面体之间的相对压缩性密切相关,当八面体比多面体更易压缩或更“软”时,高压下八面体倾斜降低;反之,当八面体比多面体更“硬”时,八面体倾斜随压力增加而增大。然而,是什么因素决定八面体和多面体的相对压缩性同样也并不是很清楚,一直以来,科学工作者试图建立它们之间的关系,因为这意味着能够预言钙钛矿的高压压缩行为。
相变温度的最后我们给出钙钛矿的高温高压倾斜对二价例如，可能会得到与实验不相符的结果但由于没有一般性的方法估计公式中所包含的经验关系论，有兴趣的读者可以查阅有关文献和专著

释：

模型的物理及化学理论基础进行了广泛深入的讨论。基于泡令化学价键模型被广泛地应用于解释无机晶体中原子和多面体压缩率之间的关系。因此价键匹配关系要求

和

离子和

多面体具有不同的离子对应不

因此，对所有

实验表明价键匹配关系和实验测量结果一致

不同类型钙钛矿，随着温度改变。例如，定常压下，低对称性钙钛矿随温度增加向高对称

型钙钛矿

而越偏离

时硬度会比较高，而越偏离

型钙钛矿；因

CaSnO_{3}^{4+}

MgSiO_{3}^{4+}

CaSnO_{3}^{4+}

MgSiO_{3}^{4+}

A^{2+} B^{4+} O_{3}^{2-}

YAIO_{3} GdAlO_{3} GdFeO_{3}^{4+}

V_{i} = \sum S_{j} = V_{a} B

\begin{align*}
S_{j} &= \exp \left[\frac{R_{i} - R_{j}}{B} \right] \\
R_{i} &= \text{CaSnO}_{3}^{4+} \quad \text{Sn-O} \quad \text{1.99} \\
R_{a} &= \text{Ca}^{2+} \quad \text{V}_{a} = 2.00 \\
V_{\text{Ca}} &= 3.99 \\
\end{align*}

\beta_{B}/B_{A} = M_{i}/M_{B}

\begin{align*}
N_{i} &\quad i &\quad M_{i} &\quad i \\
&\quad 4 &\quad M_{i} &\quad 3 \\
&\quad 2 &\quad M_{i} &\quad 2 \\
&\quad 1 &\quad M_{i} &\quad 1
\end{align*}

\begin{align*}
M_{i} = \frac{R_{i} - R_{j}}{B} &\quad M_{i} = \frac{R_{i} - R_{j}}{B} \\
&\quad M_{i} = \frac{R_{i} - R_{j}}{B}
则伴随着晶胞体积的膨胀。在高压下，对刚性八面体而言，晶胞体积压缩只有通过增加刚性八面体倾斜来实现，因此高压效应和温度降低效应是一致的或与温度增加效应相反，也就是

\[M_1 / M_2 < 1 \]

高压单晶射线衍射实验证明八面体并非常认为的那样是刚性的，但高压下，刚性八面体钙钛矿仍然与非八面体相似，如前面指出的，压力导致此类钙钛矿的八面体倾斜增加，因此，对此类钙钛矿而言，压力对高温相变的影响和“一般性”规律是一致的。实验发现与“一般性”规律相违背的钙钛矿均属于另外一类，即三面体的钙钛矿。例如，常温下，\(T_e < 0.5 \)在大约97°C发生高压相变，晶体从三方晶系结构通过连续转动转变为立方晶系结构，第一性原理预测高压下将发生同样的结构相变，实验已经观察到在0°C左右，准立方晶胞体积和八面体体积随压力的变化，相变导致晶胞和八面体体积，以及八面体倾斜角度发生不连续变化。图6-1钙钛矿相图示意图。

当八面体比三面体更硬时，

\[M_1 / M_2 > 1 \]

发生同样的相变。相似地，\(T_e > 0.5 \)在67°C发生从正交晶系晶体结构转变到三方晶系结构的一级相变，对所有这些钙钛矿，高温下发生同样的相变，因此压力增加和温度降低的效果是相反的或与温度增加的效应是相同的，也就是说，相变温度随压力增加而降低，即

\[M_1 / M_2 > 1 \]

热力学要求

\[V_2 / V_1 > 1 \]

因为从低对称性结构相变到高对称性，\(M_1 / M_2 < 1 \)，因此

\[V_2 / V_1 < 1 \]

对三面体的钙钛矿，高压导致八面体倾斜降低，同时，八面体比三面体具有更高的压缩率，刚性假设不再适用于描述此类钙钛矿的高压行为。由于八面体被压缩的同时倾斜也减小，倾斜对晶胞体积的变化贡献是晶胞体积的增加，因此对晶胞体积的压缩的贡献不可能来自八面体倾斜，只能来自八面体压缩，即八面体表现出更高的压缩率，如图6-1所示，晶胞体积压缩量小于八面体压缩量，主要由于八面体倾斜减小部分抵消了其压缩对晶胞体积压缩率的贡献。综合上述，预言钙钛矿倾斜相变温度一般性规律可以概括为

\[M_1 / M_2 > 1 \]

(如图6-1所示)对三面体的钙钛矿，八面体倾斜随压力增加而增加，因为三面体位置比其更易压缩，从低温低对称性结构相变到高温高对称性结构伴随着体积和熵增加，因此，

\[M_1 / M_2 < 1 \]

体积的增加来源于八面体倾斜和体积膨胀；对三面体的钙钛矿，压力·
d\(T_c/dP < 0\) for \(M_1/M_2 = 0.62\) and \(M_1/M_2 = 0.50\). We found that the \(d\(d\) of \(\delta\) and \(\Delta\) for \(M_1/M_2 = 0.62\) is greater than that for \(M_1/M_2 = 0.50\) in all cases.

Multiple rings were prepared for the experiment, with the rings of each size acting as standards in the analysis of the data. The results for the rings of different sizes were found to be consistent with the theoretical predictions.

The experimental results were also compared with theoretical calculations, and good agreement was observed. The agreement between the experimental and theoretical results provides strong evidence for the validity of the theoretical predictions.

In summary, we have demonstrated the existence of \(T_c\) in \(BO_6\) and \(BO_5\) systems, and the results are consistent with theoretical predictions. The experimental determination of \(T_c\) in these systems will be useful for further studies of high-temperature superconductivity.

References:

32. Lehmann H et al. Z. Kristallogr. 2000 215 536
35. Chen J et al. American Mineralogist 2005 90 534