反铁磁拓扑绝缘体与轴子绝缘体 ——MnBi₂Te₄系列磁性体系的研究进展

占国慧' 王怀强' 张海军^{1,2,†}

(1 南京大学物理学院 南京 210093)

(2 南京大学固体微结构物理国家重点实验室 南京 210093)

Antiferromagnetic topological insulators and axion insulators——MnBi₂Te₄ family magnetic systems

ZHAN Guo-Hui¹ WANG Huai-Qiang¹ ZHANG Hai-Jun^{1,2,†}

(1 School of Physics, Nanjing University, Nanjing 210093, China)

(2 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China)

摘 要 拓扑物质态是21世纪以来凝聚态物理领域最重要的前沿课题之一。它不仅深 化了人们对宏观量子物质态的认识,同时也具有极大的潜在应用价值。目前,非磁性拓扑物质 态的研究已经较为完善,而磁性拓扑物质态的研究仍处于初始阶段。近两年来,以MnBi₂Te₄系 列体系为代表的本征磁性拓扑绝缘体的出现,迅速掀起了磁性拓扑绝缘体的研究热潮。文章从 拓扑物质态的基本理论出发,介绍了近期反铁磁拓扑绝缘体方面的一些重要研究进展,着重阐 述了MnBi₂Te₄系列的反铁磁拓扑绝缘体、静态轴子绝缘体以及动态轴子绝缘体,并对磁性拓扑 绝缘体的下一步研究进行了展望。

关键词 拓扑物质态,反铁磁拓扑绝缘体,静态轴子绝缘体,动态轴子绝缘体

Abstract Topological quantum states have become one of the most frontline topics in condensed matter physics since the 21st century. They have not only deepened our understanding of the states of matter, but also hold great promise for future potential applications. Although there has been a well-established framework for nonmagnetic topological states, the study of magnetic topological states is still in its infancy. In the last two years, the discovery of the MnBi₂Te₄ family of intrinsic magnetic materials has given rise to an upsurge of studies on magnetic topological insulators. Here, starting from basic principles, we give a brief introduction to important advances in this field. Antiferromagnetic topological insulators, axion insulators, and dynamical axion insulators in the MnBi₂Te₄ family are extensively discussed. Finally, we present a simple perspective on magnetic topological states.

Keywords topological quantum state, antiferromagnetic topological insulator, static axion insulator, dynamical axion insulator

1 引言

拓扑本是一个重要的数学几何概念,主要研 究一个几何图形或者空间在进行连续改变后能够 保持不变的某些性质。莫比乌斯纸带、多面体的 欧拉定理、扭结理论等,都是大家广为熟知的拓 扑学问题。在20世纪七八十年代,三位美国物理 学家 David Thouless, Michael Kosterlitz 和 Duncan

2020-06-05 收到 † email: zhanghj@nju.edu.cn DOI: 10 7693/wl20201203 Haldane 创造性地运用拓扑理论来揭示凝聚态物 理中的新奇现象,开创了全新的拓扑物理研究方 向,并且由此获得了2016年的诺贝尔物理学奖。 凝聚态物理中新发现的拓扑物质态不能由传统 对称性破缺理论来描述,是一种全新的宏观量子 态。当前,拓扑物质态和拓扑材料研究已经成 为凝聚态物理领域最重要的研究内容之一。令人 倍感骄傲的是,众多中国科学家站在了拓扑物理 研究的科研最前沿,在国际上发挥了重要的引领 作用。

近年来,人们发现了多种新奇的拓扑物质态,极大地丰富了凝聚态物理的研究内容^[1-4]。2005年,量子自旋霍尔效应是由美国科学家Kane和Mele 首先在理论上预言的拓扑物质态^[5],具有非零的 拓扑不变量 Z₂=1。从能谱上看,量子自旋霍尔态 的体电子结构是绝缘态(具有非零体能隙),在边 界上有一对金属性的被时间反演对称性保护的一 维螺旋(helical)边界态(图1(a))。在保证体系时间 反演对称性和体能隙不闭合的条件下,量子自旋 霍尔态不能"绝热"演化到拓扑平庸的绝缘态 (Z₂=0),体现了量子自旋霍尔效应的拓扑稳定性。 2007年,量子自旋霍尔效应在斯坦福大学张首晟 教授与合作者预言的HgTe/CdTe量子阱中被实验 证实^[6,7]。从此掀开了在凝聚态物理中探索拓扑物 质态和拓扑材料的热潮。2010年,中国科学院物 理研究所的方忠院士团队最早理论预言磁性原子 掺杂的(BiSb)2Te3薄膜可以实现量子反常霍尔效应^[8] (图 1(b)), 2013年清华大学薛其坤院十团队在该 体系中成功观测到量子反常霍尔效应⁹⁹。2009 年,张首晟教授和方忠院士团队合作,理论上发 现了迄今为止最具代表性的三维拓扑绝缘体 Bi₂Se₃系列(图1(c)),引燃了国际上拓扑绝缘体研 究的热潮^[10]。2011年,南京大学万贤纲教授及其 合作者,最早提出外尔(Weyl)半金属的概念(图1 (d)), 开辟了拓扑半金属的研究方向^[11]。2015年, 翁红明研究员、戴希教授和方忠院士团队发现 TaAs 系列 Wevl 半金属^[12],推动了国际上拓扑半金 属的研究。除此之外,拓扑超导态、晶体对称性 保护的拓扑绝缘体、磁性拓扑绝缘体、高阶拓扑绝 缘体(图1(e))等全新拓扑物质态被相继发现[13-16]。

虽然拓扑物质态的探索取得了巨大成功,但 是目前主要研究成果集中在非磁性拓扑物质态方 面。而磁性拓扑绝缘体的研究尚处于初始阶段, 需要人们进一步去探索和研究。主要原因是,一 方面,磁性理论涉及强关联电子问题,一直是凝 聚态物理中的难题之一,磁性拓扑物质态很难通 过基于单电子近似的第一性原理计算准确地预

言: 另一方面, 磁性自 由度与体系空间群结合 形成巨大的磁空间群, 极大地丰富了磁性拓扑 物质态。此外,因为实 际磁性材料中经常伴随 着各种磁畴和样品缺 陷,合成纯净的磁性材 料样品也是实验工作的 巨大挑战。下面我们将 介绍近期人们在磁性拓 扑绝缘体研究方面取得 的一些重要进展。限于 篇幅,在保持内容完整 性的基础上,以介绍本 课题组的工作内容为主。

2 拓扑物质态理论

当前对于拓扑物质态的描述主要有两种理 论:一种是基于单电子图像的拓扑能带理论^[17,18]; 另一种是基于低能长波条件下的有效拓扑场论^[2,19]。 拓扑能带理论主要适用于无相互作用体系,可以 提供能带拓扑性质的简洁判据,定义各种拓扑不 变量。拓扑场论可以刻画具有无序和相互作用的 体系,并且可以用来描述与拓扑性质相关的各种 物理响应行为。在无相互作用的极限下,两者对 于系统拓扑性质的描述是等价的^[20]。下面我们将 分别介绍这两种拓扑理论。

2.1 拓扑能带理论

2.1.1 量子(反常)霍尔效应与陈数

量子霍尔效应和量子反常霍尔效应都具有量子化的霍尔电导。它们的霍尔电导来源于无能隙的具有鲁棒性(robust)单向传输的一维手征(chiral)边缘态。通过体边对应关系,边缘态的数目可以通过计算体系的拓扑不变量(陈数)得到。陈数可以表示成贝利(Berry)曲率在整个布里渊区积分:

$$C_n = \frac{1}{2\pi} \int \mathrm{d}^2 \mathbf{k} \mathcal{F}_n \,. \tag{1}$$

$$\mathcal{F}_n = \nabla \times \mathcal{A}_n, \quad \mathcal{A}_n = i \langle u_n | \nabla_k | u_n \rangle, \quad (2)$$

分别表示定义在布洛赫波函数上的贝利曲率和贝 利联络。对所有占据态的陈数进行求和就可以得 到系统的总陈数,它和系统量子化霍尔电导的倍 数相等。作为拓扑不变量,只要系统的体能隙不 关闭,陈数就保持不变。需要注意的是,当体系 具有时间反演对称性时,贝利曲率满足 $\mathcal{F}_n(k) =$ $-\mathcal{F}_n(-k)$,从而使得陈数为0。因此要得到非零的 陈数必须破坏系统的时间反演对称性,如通过外 加磁场或者引入磁性长程序等。

2.1.2 拓扑绝缘体与拓扑不变量 Z₂

拓扑绝缘体的一个重要特征是布里渊区高对称性点附近的能带反转。比如,HgTe中s轨道主导的 Γ₆带和p轨道主导的 Γ₈带在 Γ 点的能带反转^[6]。然而反带结构并不是体系具有非平庸拓扑

性质的充要条件,需要进一步计算体系的拓扑不 变量。这里我们主要介绍Kane等人基于能带理论 定义的拓扑不变量 Z₂^[18]。

对时间反演操作关联的 *k* 和 −*k* 两点的布洛 赫态,可以定义如下的关联矩阵:

$$w_{mn}(\mathbf{k}) = \left\langle u_m(\mathbf{k}) | \boldsymbol{\Theta} | u_n(-\mathbf{k}) \right\rangle.$$
(3)

其中 Θ 代表时间反演算符。在时间反演不变点 Λ_i 处,可以证明 w_{mn} 矩阵是反对称的,从而可以定义如下特征量:

$$\delta_i = Pf[w(\Lambda_i)] / \sqrt{\operatorname{Det}[w(\Lambda_i)]} = \pm 1.$$
(4)

这里 *Pf* 代表反对称矩阵的 Pfaffian。因此,对于 二维拓扑绝缘体, Z_2 不变量可以定义为所有4个 时间反演不变点的 δ_i 乘积:

$$(-1)^{\nu} = \prod_{i=1}^{4} \delta_i , \qquad (5)$$

其中, v=1(v=0) 代表拓扑非平庸(平庸)相。这 里, v=1的二维拓扑绝缘态就是量子自旋霍尔态。

对于三维拓扑绝缘体,类似地,所有8个时间反演不变点的 δ_i 乘积可以定义出一个强拓扑不 变量: $(-1)^{v_0} = \prod_{i=1}^{8} \delta_i$ 。其中 $v_0 = 1$ 意味着体系是强 拓扑绝缘体,其任意取向的表面都具有无能隙的 二维表面态。除了这一强拓扑指标,还可以定义 3个独立的弱二维 Z_2 指标 (v_1, v_2, v_3) ,因此三维拓 扑绝缘体具有4个独立的 Z_2 指标 $(v_0; v_1 v_2 v_3)$ 。当 $v_0 = 0$ 以及弱拓扑指标 v_1, v_2 和 v_3 中至少一个不为 0时,体系可以看成是由二维拓扑绝缘体堆积而 成的三维弱拓扑绝缘体。相比强拓扑绝缘体而 言,它对于弱无序和微扰不稳定,并且无能隙表 面态的存在与否依赖于表面的取向。

2.2 拓扑场论

2.2.1 拓扑作用量

这里我们主要介绍三维拓扑绝缘体的低能有 效拓扑场论^[2,19]。通过对4(空间维度)+1(时间维度) 维时间反演不变的拓扑绝缘体的Chern—Simons 作用量进行维度约化,便可以得到3+1维绝缘体 的有效作用量:

$$S_{\theta} = \frac{\alpha}{32\pi^2} \int d^3 \boldsymbol{r} \, dt \, \theta(\boldsymbol{r},t) \, \epsilon^{\mu\nu\rho\tau} F_{\mu\nu} F_{\rho\tau}(\boldsymbol{r},t) \,, \qquad (6)$$

其中 α 是精细结构常数, $\epsilon^{\mu\nu\rho r}$ 是四阶 Levi—Civita 张量, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ 是电磁场张量, $\theta(\mathbf{r}, t)$ 是 个赝标量场, 它在场论中被称为轴子(axion)场。

轴子场 θ 有两个重要的性质。首先,对于具 有周期性边界条件的体系, θ 和 θ +2 π 是等价 的,其次, θ 在时间反演或者空间反演操作下要 反号变成 - θ 。因此,对于具有时间反演对称性的 三维绝缘体, θ 只能为0或者 π ,对应三维普通 或拓扑绝缘体。这样拓扑场论中量子化的轴子场 θ 和拓扑能带理论定义的 Z_2 拓扑不变量可以等价 地描述三维拓扑绝缘体,有(-1)^{θ/π} = (-1)^{v_0}。和拓 扑能带理论相比,低能有效的拓扑场论对相互作 用体系也适用,有更广的普适性,并且可以直接 得到拓扑起源的各种物理响应。

2.2.2 轴子电动力学与动态轴子绝缘体

在高能物理领域,轴子是20世纪70年代为解 决强相互作用中"空间宇称和电荷共轭的联合变 换"守恒问题,而由Peccei—Quinn理论首先提出 的一种假想粒子[21]。该理论预言,轴子具有极微 小的质量(电子质量的10⁻¹¹),并且其电荷和自旋 都为0,通过引力和电磁力相互作用。轴子具有 寿命长、温度低、无碰撞等类似于磁单极粒子的 特性。近些年来,轴子被认为是宇宙模型中暗物 质的可能构成粒子之一。可惜直到今天, 轴子在 自然界中是否真实存在仍然没有定论。1987年, 理论物理学家 Wilczek 引入一个额外的麦克斯韦作 用量 $\Delta \mathcal{L} = \kappa \theta E \cdot B$ 来研究轴子电动力学效应^[22],其 中 κ 是耦合常数, θ 是轴子场, E 和 B 分别是电 场和磁场。如果对比拓扑场论中三维拓扑绝缘体 的拓扑作用量 S_{θ} 与 Wilczek 引入的轴子作用量 $\Delta \mathcal{L}$,可以看到拓扑作用量本质上就是一个有效的 轴子麦克斯韦作用量。轴子麦克斯韦作用量会导 致新形式的麦克斯韦方程组:

$$\nabla \cdot \boldsymbol{D} = 4\pi\rho + \frac{\alpha}{\pi} (\nabla \theta \cdot \boldsymbol{B}),$$

$$\nabla \times \boldsymbol{E} = -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t},$$

$$\nabla \cdot \boldsymbol{B} = 0,$$

$$\nabla \times \boldsymbol{H} = \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t} + \frac{4\pi}{c} \boldsymbol{j} - \frac{\alpha}{\pi} \Big(\nabla \theta \times \boldsymbol{E} + \frac{1}{c} \partial_{t} \theta \boldsymbol{B} \Big),$$

(7)

其中 D 和 H 是普通的电位移矢量和磁场强度矢 量, $\rho \pi i$ 是通常的电荷密度和电流密度。从方 程组(7)可明显地看出轴子场产生的新效应——额 外的"电荷密度"和"电流密度"。磁场 B 通过 空间变化的轴子场 $\nabla \theta$ 诱导出额外的电荷密度, 电场 E 和磁场 B 通过时空变化的轴子场(θ 和 $\nabla \theta$)诱导出额外的电流密度,反映了磁电耦合效 应。我们还可以注意到,如果轴子场 θ 是常数, 这些额外的"电荷密度"和"电流密度"必然为 零,这时麦克斯韦方程组退化到通常的形式。具 有随时空变化的轴子场 θ(r,t) 绝缘体被称为动态 轴子绝缘体。通常情况下,传统磁性绝缘体中的 轴子场非常微弱。2010年,张首晟教授与合作者 理论研究表明,通过在三维拓扑绝缘体 Bi₂Se₃中 引入反铁磁序来设计强动态轴子绝缘体[23],并且 预言了轴子极化激元等新奇现象。

2.2.3 拓扑磁电效应与轴子绝缘体

三维拓扑绝缘体 (θ=π)的拓扑作用量会导致 很多有趣的物理效应^[23-32],包括表面的半整数量 子霍尔效应^[2]、拓扑磁电效应^[25-28]以及拓扑磁光 (Faraday和Kerr)效应^[29-33](图2(f))。下面,我们介 绍一下半整数量子霍尔效应。

半整数的量子化霍尔电导可以从拓扑绝缘体 表面存在的奇数个无能隙的Dirac锥表面态去理 解。通过在表面引入破坏时间反演的微扰项(如外 磁场或者铁磁近邻效应),可以打开原本无能隙表 面态的带隙。每一个有能隙的Dirac 准粒子会贡献 1/2的量子化霍尔电导,从而使得表面霍尔电导为 半整数。值得注意的是,表面半整数量子霍尔效 应是不能够通过电子输运实验所观测的。因为一 旦拓扑绝缘体的整个表面态被打开能隙,则意味 着该二维表面没有开放的一维边界来承载霍尔电 流。有意思的是,我们可以通过在拓扑绝缘体表 面构造磁畴来实现表面态有效质量的正负转变(图 2(c)), 表现为整数量子霍尔效应。这也是实验上 获得量子反常霍尔效应的一种可行手段。此外, 实际上拓扑绝缘体总有上下两个表面,系统总的 霍尔电导是这两个表面贡献之和。当上下表面磁 性方向同向时,上下表面态的霍尔电导同为 n/2,则此时系统的总霍尔电导为n,表现为量 子反常霍尔效应(图2(a));当上下表面磁性方向相反时,两个表面的分数霍尔电导符号相反,总的霍尔电导为0,表现为轴子绝缘态(图2(b))^[19,34]。

拓扑磁电效应是轴子绝缘体的最重要效应之 一,即电场可以诱导磁极化,磁场也可诱导电极 化。设计如图 2(d)的圆柱体结构,当磁化强度指 向圆柱体表面时,该表面态打开能隙,具有固定 半整数的霍尔电导 $\sigma_{\rm H} = (n+1/2)e^2/h$ 。施加一个平 行于圆柱体的外电场,侧面上将产生强度为 $j_t = \sigma_{\rm H} E$ 的切向循环电流。循环电流的大小与由 恒定磁化强度 $M = j_t/c$ 产生的表面束缚电流相 同,其方向与电场反平行,即电场感生出磁化。 类似地,如图 2(e)所示,施加平行于圆柱体的磁 场,根据Faraday电磁感应定律,产生切向的环形 电流,进而感应出与磁场平行的霍尔电流,在上 下表面积累与磁感应强度 B 成正比的电荷密度, 即磁场会引起电荷极化。

为了实现轴子绝缘态和量子化拓扑磁电效应, 需要满足三个基本要求^[19,28]:(1)体能带是绝缘的; (2)拓扑表面态要求也是绝缘的;(3)大的块材拓扑 绝缘体,消除有限尺寸效应。其中,条件(1)比较 容易实现,譬如通过精确调控拓扑绝缘体 Bi₂Se₃ 就可以得到有能隙的体能带。条件(2)非常具有挑 战性。目前实验上的做法是放宽条件(3),通过尺

寸效应和表面覆盖铁磁绝缘 体来实现轴子绝缘态。但是 受到尺寸效应的影响,严格 来说,并不是实现了精确量 子化的静态轴子绝缘体^[35]。 另一方面,由于在拓扑绝缘 体表面覆盖铁磁绝缘体,一 般情况下界面必然伴随着 各种缺陷。最理想的情况是 能够在本征磁性的体系中寻 找轴子绝缘体,自然地满足 条件(2)和(3)。下面我们将具 体介绍该方面的最新研究进 展——反铁磁拓扑绝缘体 MnBi₂Te₄。

3 反铁磁轴子绝缘体 MnBi₂Te₄

早在2010年, K. Mong等人指出, 反铁磁绝 缘体中的时间反演对称操作T和空间平移操作 $\tau_{1/2}$ 的联合对称性 S=TT1/2 也可以保证体系的轴子场 $\theta = \pi$,成为反铁磁拓扑绝缘体^[36]。2013年,韩国 科学家最早合成MnBi₂Te₄体系^[37],其主要关注该 体系的热电效应,并且指出该体系属于亚稳结 构。比较遗憾的是,该文章没有涉及任何拓扑物 质态的研究,也没有报道该体系的磁性结构。故 而,当时没有引起大家的广泛关注。2017年, Otrokov等人基于第一性原理计算,将MnBi₂Te₄作 为磁性绝缘体薄膜覆盖在拓扑绝缘体 Bi2Te3的 表面[38],希望通过磁性近邻效应来打开拓扑绝缘 体表面态的能隙,实现量子反常霍尔效应。可以 看到,此时MnBi₂Te₄体系本身的拓扑性质一直没 有被真正地意识到。直到2019年,大家才开始关 注MnBi₂Te₄的高质量实验生长和其本征的拓扑性 质,国内外最早独立发表的四篇重要工作拉开了 MnBi₂Te₄体系中磁性拓扑物质态的研究序幕^[39-42]。

首先是清华大学何珂教授与合作者率先利用 分子束外延方法成功合成了MnBi₂Te₄薄膜^[39],他 们发现交替生长Bi₂Te₃和MnTe层,体系会自发地 形成全新的化合物MnBi₂Te₄,实验上通过角分辨

图2 拓扑磁电效应 (a)表面磁矩打开拓扑绝缘体薄膜表面态能隙,形成量子反常霍尔相(上下表面磁矩方向相同); (b)轴子绝缘体相(上下表面磁矩方向相反); (c)拓扑绝缘体表面相反磁畴边界处形成的无能隙边缘态; (d, e)拓扑磁电效应示意图:电场产生磁化(d),磁场产生电极化(e); (f)拓扑绝缘体中量子化Faraday效应实验测量示意图^[3]

代表分数平移矢量;(b)体系表面态示意图,保留S对称性的表面具有无能隙的Dirac锥表面态,而破坏S对称性的表面具有有能隙的Dirac锥表面态;(c)反铁磁MnBi₂Te₄(111)方向表面(破坏S对称性);(d)选取(c)图中黄色线位置能量的费米面。由于破坏时间反演对称性,费米面呈现三角构型^[40];(e)(011)方向表面(保留S对称性)的表面态

光电子谱(ARPES)成功观测到了典型的Dirac表面 态,表明该体系是一类新的磁性拓扑绝缘体,并 结合理论计算指出了体系具有A型的反铁磁结 构。南京大学张海军课题组和复旦大学王靖教授合 作,聚焦在三维MnBi₂Te₄体系,理论上确认了该 体系的A型反铁磁长程序,并且最早指出该体系 是受S对称性保护的三维反铁磁轴子绝缘体^[40], 其轴子场 θ=π。与三维拓扑绝缘体的本质区别 是, 它只在特定的满足S对称的晶面上具有拓扑 保护的无能隙表面态,其他晶面上表面态打开了 能隙(图 3(b))。如果样品表面避开S对称性的晶 面,则表面态可以完全打开能隙,实现反铁磁轴 子绝缘态和量子化的拓扑磁电效应。清华大学徐 勇教授与合作者基于第一性原理计算[41],深入研 究了MnBi₂Te₄体系,独立地发现了该体系的重要 磁性拓扑性质,特别是指出了该体系具有新奇的 层厚奇偶性特征。国际上,西班牙 Chulkov 教授 团队与国内同时期报道发现了MnBi₂Te₄的磁性拓 扑绝缘体性质^[42]。很快,国内外越来越多的研究 组对MnBi₂Te₄体系展开系统的深入研究。

如图 3(a)所示, MnBi₂Te₄是一种A-B-C型密 堆叠层状磁性材料, (Te=Bi=Te=Mn=Te=Bi=Te)七 原子层(septuple layer, SL)是结构的基本单元, Mn 原子层位于每个 SL 单元的中心。SL 单元内部, 近邻原子之间形成强的共价键,而SL单元之间是 弱的范德瓦耳斯相互作用,故而该体系易于实验 剥离,是一类准二维体系。若忽略 Mn 原子的磁 性,该体系空间对称性与三维拓扑绝缘体Bi₂Te₃ 一致,属于空间群 $D_{34}^{5}(R\overline{3}m)$ (空间群号为166)。体 系具有空间反演对称性,反演中心在Mn原子, 沿着密堆积方向具有一个三度旋转轴,面内具有 三个二度旋转轴,同时体系具有三个镜面通过三 度旋转轴。目前理论计算和实验公认的磁性结构 是A型反铁磁结构, SL单元内部的Mn原子层是 铁磁序, Mn 原子的稳定磁矩方向沿着三重旋转主 轴方向。最近邻的SL单元之间的Mn原子磁矩成 反铁磁排列。该反铁磁结构的出现,破坏了二度 旋转对称性, 使得镜面对称变为滑移面对称, 并 且带来 S=Tt_{1/2} 对称性,其中 t_{1/2} 为平移操作(如图 3(a)中的绿色箭头所示)。在该体系中,S对称性 和空间反演对称性共同限制体系的轴子场 $\theta=\pi$ 。

这里,联合对称S"扮演着"时间反演算符T的角色,它们都为反幺正算符,并有 $S^2 = -e^{ik_3}$,其 中倒空间矢量 k_3 对应于平移操作 $\tau_{1/2}$ 方向基矢 a_3 。可以看到当 $k_3=0$ 时,也就是倒空间对应于 $(k_1, k_2, k_3 = 0)$ 平面上有 $S^2 = -1$, 等效于时间反演操 作T。在该二维平面上,我们可以定义拓扑不变量 Z₂,但是需要强调的是,该Z₂是一个描述三维系 统的二维拓扑不变量,故而, MnBi₂Te₄具有弱的 拓扑性质,不同于通常意义上的三维拓扑绝缘 体。其表面态也不再像三维拓扑绝缘体那样全部 表面保持无能隙,而是在满足S对称性的表面上 才保持无能隙(图3(e))。譬如,在三度旋转轴为法 线的表面(001)上,表面态由于表面的磁性交换作 用而打开能隙(图3(c))。另外,由于时间反演对称 性破坏, 该表面态的费米面不再是六角形, 而是 三角形(图 3(d))。虽然该体系从能带拓扑不变量理 论上来说具有弱的拓扑性质,但是从拓扑场论上 来说则是静态轴子绝缘体 $\theta = \pi$,具有本征磁性, 拓扑边界态自发地打开能隙的"理想轴子绝缘体"。

该体系还具有更为丰富的拓扑物态现象。虽 然体系的磁性基态是A型反铁磁,但是由于磁矩 间的交换作用不是太强,实验上完全可以通过外 界磁场 B 来反转 Mn 原子的磁矩,实现铁磁结构 (图 4(d))。譬如,磁场 B 加在三度旋转轴方向 的磁性正好相反,所以体系会有剩余的磁矩,表 现出亚铁磁性质。理论计算表明3SL及以上厚度 的MnBi₂Te₄薄膜可以实现量子反常霍尔效应(图4 (f))。薄膜具有偶数层SL单元时,体系没有剩余的 磁矩,此时体系具有时间反演和空间反演的联合 对称性——*PT*对称性,能带保持两重简并,体系 陈数*C*为0,是拓扑平庸的。

近期实验上取得了一系列重要进展^[43,44,46],展现了一系列新奇的磁性拓扑物态。复旦大学张远波教授和中国科学技术大学陈仙辉院士等人合作,实验上证实了Neel温度 $T_N = 25$ K的A型反铁磁结构^[43],率先观测到了奇数层MnBi₂Te₄薄膜的高温量子反常霍尔效应(1.4 K)(图 5(a)和(b))。清华大学王亚愚教授和徐勇教授等人合作,发现在磁场下的MnBi₂Te₄薄膜(6SL)可实现轴子绝缘态与量子反常霍尔态之间的量子转变^[44](图 5(c)和(d))。北京大学王健教授课题组在基于MnBi₂Te₄的器件中实现了高陈数的量子反常霍尔态^[46]。

MnBi₂Te₄其实代表了一大类"Mn-Bi-Te"磁 性体系,一般性的化学式表示为 $(XB)_m(A_2B_3)_n$, 其中 X =Mn/Eu, A =Sb/Bi, B =Se/Te, $m \approx n n$ 为 整数。可以看出,这类化合物可以形成丰富的体

时,基于第一性原理 计算,我们发现在铁 磁结构下, MnBi₂Te₄ 的能带结构中会在沿 着磁场方向出现两个 Weyl点,成为铁磁 c))。非常有意思的是, 此时体系中只有一对 Weyl 点,而且 Weyl 点 精确地落在费米能 级,是最理想的 Weyl 半金属态^[40, 41]。此外, 当 MnBi₂Te₄体系从三 维降到二维薄膜时(图 4(e)),具有非常有意 思的奇偶特性^[45]。薄 膜具有奇数层 SL 单元 时,因为相邻 SL 单元

图4 Weyl半金属态和陈绝缘体 (a)铁磁相MnBi₂Te₄体能带结构, $\Gamma - Z$ (平行磁场方向)上具有一对 处在同一能量处的理想Weyl点; (b)(011)方向表面的表面态,可以很明显看到 k_1 方向上的一对Weyl 点; (c)连接这对Weyl点的费米弧; (d)ISL单元结构示意图; (e)1-3 SL的MnBi₂Te₄薄膜示意图; (f) 3SL的霍尔电导,可以看到体系处在量子反常霍尔态,具有量子化的霍尔电导 $\sigma_{\rm H} = e^2/h^{49}$

系家族,譬如,已经被实验上展开深入研究的 MnBi₂Te₄,MnBi₄Te₇,MnBi₆Te₁₀和MnBi₈Te₁₃^[47–51] (图 6(b)),还有被预言为动态轴子绝缘体的 Mn₂Bi₂Te₅,Mn₂Bi₆Te₁₁等^[52,53]。随着成分(A_2B_3)的 增加,可以预期层间反铁磁作用将会逐步减 弱,甚至会变为铁磁结构,更有利于外界磁场 的调控。类似的材料体系如(GeTe)_m(Sb₂Te₃)_n和 (GeTe)_m(Bi₂Te₃)_n已经作为重要的相变存储材料被 广泛深入地研究^[54]。人们可以看到该类体系的 常见基本结构模块分别是5层单元 A_2B_3 ,7层单 元 XA_2B_4 和9层单元 $X_2A_2B_5$ (图 6(a))。基于这些 基本结构模块,可以像搭建乐高积木一样,搭建 出各种复杂结构。故而,Mn–Bi–Te磁性体系家 族,非常值得理论和实验上继续深入探索和挖掘。

4 动态轴子绝缘体

我们前面提到,对于同时破坏空间反演和时 间反演对称性的三维反铁磁绝缘体,轴子场不再

图5 近期重要实验进展 (a, b)实验上观测到奇数层 MnBi₂Te₄薄膜的高温 量子反常霍尔效应的霍尔电阻(a)和纵向电阻(b)^[43], (c, d)实验上在6SL的 MnBi₂Te₄薄膜中观测到的轴子绝缘体相(c)和陈绝缘体相(d)^[44]

被限制为量子化的 0 和 π 。这类磁性体系中内 禀存在的反铁磁序参量的涨落会导致动态轴子 场^[23, 28, 55, 56],表示为: $\theta(x,t) = \theta_0 + \delta\theta(x,t)$,其中 θ_0 和 $\delta\theta(x,t)$ 分别是源于反铁磁基态的静态部分和源 于反铁磁序涨落的动态部分。动态轴子场可以导 致很多新奇有趣的物理效应,比如动态的手征磁 效应和反常霍尔效应^[22, 52, 57],轴子和光线性耦合形 成的轴子极化激元^[23],以及由轴子失稳诱导的电 磁效应^[58, 59]。

目前,在动态轴子绝缘体领域有两个重要的 科学问题依然悬而未决。其一,拓扑分类的问题。 由于时间反演对称性被破坏,拓扑不变量 Z_2 已经 不再适用,能否从拓扑上区分以拓扑绝缘体为母 体的动态轴子态和传统反铁磁绝缘体的动态轴子 态?我们定义基于赝自旋陈数的隐含拓扑不变量 来区分这两类动态轴子态^[33]。拓扑非平庸的动态 轴子绝缘体具有各向同性的强动态轴子场 ($\theta_0 \sim \pi$),而拓扑平庸的动态轴子绝缘体具有非常 微弱的轴子场($\theta \sim 0$),譬如传统反铁磁绝缘体氧

> 化铬^[60]。其二,尽管基于理论模型,人 们预言了很多和动态轴子场有关的新奇 物理效应,但是由于缺乏实际的材料, 实验上一直没有能够直接观测和验证这 些现象。我们理论预言了拓扑非平庸的 动态轴子绝缘体 Mn₂Bi₂Te₅系列体系^[52]以 及 MnBi₂Te₄/Bi₂Te₃ 异质结系列体系^[53], 有望推动该方面的实验工作。

4.1 低能有效哈密顿量

不失一般性,我们从三维拓扑绝缘 体 Bi₂Te₃的低能有效模型出发^[10],然后 把反铁磁项看成系统微扰。在非磁态, 体系具有空间反演对称性,能带中4个 低能态来源于 Bi 原子 p 轨道的成键态 $|P1_{z}^{+},\uparrow(\downarrow)\rangle$ 以及来源于 Te 原子 p 轨道的 反键态 $|P2_{z}^{-},\uparrow(\downarrow)\rangle$ 。以这4个低能态为 基矢,体系具有 D_{3d} 群对称操作,通过 不变量原理保留到 k 平方阶的相关项, 系统有效哈密顿量可以写成:

$$\mathscr{H}_{0}(\boldsymbol{k}) = \epsilon_{0}(\boldsymbol{k})I_{4\times4} + \sum_{i=1}^{5} d_{i}(\boldsymbol{k})\Gamma^{i}, \qquad (8)$$

反铁磁序的存在同时破坏空间反演 \mathcal{P} 和时间反演 \mathcal{T} 对称性。这对于动态轴子态的存在非常关键。 保留到主导阶,破坏 \mathcal{P} 以及 \mathcal{T} 的质量项可以写为 $\delta \mathcal{H}_{AFM} = m_{s} \Gamma_{s}$ 。

通过相关理论计算可得三维绝缘体中的轴子 场 θ 的值。反铁磁质量项 m_s 会导致对 θ 的线性修 正,即: $\delta\theta(\mathbf{x},t)=\delta m_s(\mathbf{x},t)/g$ 。其中 δm_s 正比于反 铁磁序的涨落。需要说明的是,除了 $m_s\Gamma_s$ 这一质 量项,还存在其他破坏 \mathcal{P} 以及T的主导阶质量 项,但是它们只会造成对 θ 的高阶修正,可以被 忽略。

基于理论分析,我们指出获得强动态轴子场 的一般性办法:首先,要求同时破坏时间和空间 反演对称性、接近拓扑转变点、具有较小反带质 量 m 的三维反铁磁绝缘体;其次,要求体系接近 具有强磁涨落的反铁磁和顺磁转变点 (m₅≈0)。因 此,我们认为具有弱反铁磁序并且接近拓扑相变 点的本征反铁磁拓扑绝缘体具有机会实现强动态 轴子绝缘体^[52]。

4.2 赝自旋陈数和隐含拓扑不变量

由于反铁磁质量项 m_5 的存在,当反带质量m从负(拓扑绝缘体区域)变到正(普通绝缘体区域) 时,体能隙一直不关闭。因此严格意义上没有发 生电子态上的拓扑相变。但是我们发现,可以定义 源于赝自旋陈数的隐含拓扑不变量来从拓扑上分 类动态轴子绝缘态^[53]。(赝)自旋陈数的概念最早主 要是为了研究量子自旋霍尔效应在时间反演对称 性被破坏时的拓扑稳定性^[61]。我们把 k_2 看成参数 去计算二维 $k_x - k_y$ 平面的赝自旋陈数。针对有效 哈密顿量(8)式,我们得到 k_2 依赖的赝自旋陈数表 达式:

$$C^{S}(k_{z}) = \frac{1}{2} \left[-\operatorname{sgn} B_{2} + \operatorname{sgn}(m + B_{1}k_{z}^{2}) \right].$$
(9)

可以看到, 赝自旋陈数不依赖于反铁磁质量项 m₅。

图6 Mn-Bi-Te磁性家族体系常见基本结构模块 (a)5 层单 元 A₂B₃,7 层单元 XA₂B₄和9 层单元 X₂A₂B₅结构示意图; (b)MnBi₄Te₇, MnBi₆Te₁₆和MnBi₈Te₁₃的结构构成示意图

由于 B_1 和 B_2 被设定为正数,如果反铁磁绝缘体 质量项 m < 0,以 k_z 为参量,必然存在赝自旋 陈数 C^s 的拓扑转变,而如果反铁磁绝缘体 m > 0时,则不存在赝自旋陈数的拓扑转变。质量项 m本质上反映了反铁磁绝缘体的能带反转特征。 进一步我们可以定义一个类似 Z_2 的隐含拓扑不变 量 v:

$$v = (-1)^{C^{5}(k_{z}=0) + C^{5}(k_{z}=\pi)}, \qquad (10)$$

v=-1(1)对应反铁磁绝缘体是拓扑非平庸(平庸)的 动态轴子绝缘体。v不是直接定义在电子态上的 拓扑不变量,而是定义在电子态伴随的赝自旋态 上的隐含拓扑不变量。有意思的是,v=-1可以 直接与电子态中的能带反转相对应。意味着,通 过在拓扑绝缘体中进行弱磁性掺杂,只要不改变 体系的能带反转特征,必然得到具有非平庸的动 态轴子绝缘体,譬如反铁磁掺杂的Bi₂Se₃模型^[23]。

4.3 候选体系

我们提出了两类有希望实现拓扑非平庸动态轴子态的磁性拓扑材料。一类是以Mn₂Bi₂Te₅为 代表的系列体系,它的基本结构是具有两层磁 矩相反Mn原子的9层单元。另外一类是超晶格 (MnBi₂Te₄)_m(Bi₂Te₃)_n系列体系,其中选取的(*m*,*n*)值 必须使得体系破坏空间反演对称性,例如反铁磁结 构超晶格(MnBi₂Te₄)₂(Bi₂Te₃)^[52,53]。下面,我们将以 此超晶格体系为例说明其动态轴子场性质。 (MnBi₂Te₄)₂(Bi₂Te₃)的结构如图7(a)所示,它的基本单元是由一层Bi₂Te₃穿插在2SL的MnBi₂Te₄ 间形成的三明治结构。该结构的磁基态构型保持 A型反铁磁,每SL层内部是铁磁序,磁矩平行于 面外,相邻SL层间是反铁磁序。该体系同时破坏 了时间反演T和空间反演P对称性,但是保持PT的联合对称性。基于第一性原理计算,发现该体 系能带在 Γ 点发生了能带反转(m < 0)(图7(c))。 图7(d)中我们给出了体能隙随自旋轨道耦合强度的增 加,体能隙先逐渐减小,直到 $\lambda = 0.68$ 附近达到最 小值,并在此处发生了"能带反转",然后再逐渐 增大。这个最小带隙(~7.6 meV)来源于反铁磁序 导致的质量项 m_5 。故而,该体系的隐含拓扑不变 量v = -1,必然是拓扑非平庸的动态轴子绝缘体。

为了研究该体系中轴子场的性质,我们从 低能有效模型出发,在图7(b)中给出了轴子场的 静态部分 θ_0 (蓝线)以及动态部分与反铁磁序涨 落的比值1/g(红线)随自旋轨道耦合强度变化的曲 线图。很明显,静态 θ_0 偏离0和 π ,并且随着自 旋轨道耦合强度的增加而增加, θ₀ 从接近0的值 逐渐增加到接近π的值。对于动态部分, 1/[g] 在 λ>0.68 的反带区域要比 λ<0.68 的非反带区域大 一个数量级。1/[g] 在从反带区域接近转变点的 位置取到极大值,和我们的理论预期是一致的。 另外,作为 MnBi₂Te₄ 体系的姊妹体系 Mn₂Bi₂Te₅, 也已经在实验上成功合成。因此, Mn₂Bi₂Te₅, 也已经在实验上成功合成。因此, Mn₂Bi₂Te₅和 (MnBi₂Te₄)_m(Bi₂Te₅)_n系列磁性体系,有希望实现拓扑 非平庸的强动态轴子态,为进一步实验探测和研 究与轴子电动力学相关的新奇效应提供理想的平台。

5 总结和展望

本文简要回顾了磁性拓扑绝缘体的基本知识, 重点介绍了反铁磁拓扑绝缘体的最新研究进展。 以MnBi₂Te₄为代表的系列磁性绝缘体为例,结合 本课题组近期在理论方面的几个工作,着重讨论 了反铁磁拓扑绝缘体、静态轴子绝缘体和动态轴 子绝缘体。由于篇幅所限,未能涵盖磁性拓扑绝 缘体全面相关的重要工作。当前反铁磁拓扑绝缘

体领域的研究正在 如火如荼地开展, 重要研究成果不断 涌现,但是其中也 还有不少需要亟待 解决的科学问题。 譬如,尽管理论预 言MnBi₂Te₄的表面 态是有能隙的,但 是最近几个课题组 的角分辨光电子谱 (ARPES)实验都观 测到了无能隙的表 面态[62--64],这一现 象需要进一步的理 论解释和实验澄 清, 也许和复杂的 表面磁结构有关。 Mn-Bi-Te 系列磁 性体系的发现只是

图7 拓扑非平庸的动态轴子态 (a)动态轴子绝缘体候选材料(MnBi₂Te₄)₂(Bi₂Te₃)的单胞结构示意图; (b) 轴子场静态部分 θ₀ 的变化曲线(蓝色)以及动态部分 δθ(x,t) 随反铁磁序涨落的线性系数 1/g 变化曲线(红 色)^[56], (c)考虑自旋轨道耦合效应的体能带结构; (d)随着自旋轨道耦合强度变化时(λ代表相对于真实强 度的比值)体能隙的演化

磁性拓扑物理研究的开端,预期更多新的磁性拓 扑物理效应和理想磁性拓扑体系会被发现。最 后,需要强调的是,动态轴子绝缘体的研究还处 在理论研究的初期阶段,随着候选体系Mn₂Bi₂Te₅

参考文献

- [1] Hasan M Z, Kane C L. Rev. Mod. Phys., 2010, 82:3045
- [2] Qi X L, Zhang S C. Rev. Mod. Phys., 2011, 83:1057
- [3] Chiu C K, Teo J C Y, Schnyder A P et al. Rev. Mod. Phys., 2016, 88:035005
- [4] Armitage N P, Mele E J, Vishwanath A. Rev. Mod. Phys., 2018, 90:015001
- [5] Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95:226801
- [6] Bernevig B A, Hughes T L, Zhang S C. Science, 2006, 314:1757
- [7] König M, Wiedmann S, Brüne C et al. Science, 2007, 318:766
- [8] Yu R, Zhang W, Zhang H J et al. Science, 2010, 329:61
- [9] Chang C Z, Zhang J S, Feng X et al. Science, 2013, 340:167
- [10] Zhang H J, Liu C X, Qi X L et al. Nat.Phys., 2009, 5:438
- [11] Wan X G, Turner A M, Vishwanath A et al. Phys.Rev. B, 2011, 83:205101
- [12] Weng H M, Fang C, Fang Z et al. Phys. Rev. X, 2015, 5:011029
- [13] Qi X L, Witten E, Zhang S C et al. Phys. Rev. B, 2013, 87: 134519
- [14] Fu L. Phys. Rev. Lett., 2011, 106:106802
- [15] Tokura Y, Yasuda K J, Tsukazaki A. Nat. Rev. Phys., 2019, 1:126
- [16] Schindler F, Wang Z J, Vergniory M G et al. Nat. Phys., 2018, 14,918
- [17] Fu L, Kane C L, Mele E J. Phys. Rev. Lett., 2007, 98:106803
- [18] Fu L, Kane C L. Phys. Rev. B, 2007, 76:045302
- [19] Qi X L, Hughes T L, Zhang S C. Phys. Rev. B, 2008, 78:195424
- [20] Wang Z, Qi X L, Zhang S C. New. J. Phys., 2010, 12:065007
- [21] Peccei R D, Quinn H R. Phys. Rev.Lett., 1977, 38:440
- [22] Wilczek F. Phys. Rev. Lett., 1987, 58:1799
- [23] Li R D, Wang J, Qi X L et al. Nat. Phys., 2010, 6:284
- [24] Qi X L, Li R D, Zang J D et al. Science, 2009, 323:1184
- [25] Karch A. Phys. Rev. Lett., 2009, 103:171601
- [26] Nomura K, Nagaosa N. Phys. Rev. Lett., 2011, 106:166802
- [27] Maciejko J, Qi X L, Drew H D et al. Phys. Rev. Lett., 2010, 105: 166803
- [28] Wang J, Lian B, Qi X L et al. Phys. Rev. B, 2015, 92:081107
- [29] Tse W K, MacDonald A H. Phys. Rev. Lett., 2010, 105:057401
- [30] Wu L, Salehi M, Koirala N et al. Science, 2016, 354: 1124
- [31] Ochiai T. J. Phys. Soc. Jpn, 2012, 81:4401
- [32] Mal'shukov A G, Skarsvag Hans, Brataas Arne. Phys. Rev. B, 2013,88:245122
- [33] Okada K N, Takahashi Y, Mogi M et al. Nat. Comm., 2016, 7: 12245
- [34] Mogi M, Kawamura M, Yoshimi R et al. Nat. Mater., 2017, 16:516
- [35] Xiao D, Jiang J, Shin J H et al. Phys. Rev. Lett., 2018, 120:

和(MnBi₂Te₄)_m(Bi₂Te₃)_n的实验合成,必将开启人们 在动态轴子态新奇电磁响应方面的实验研究,推 动凝聚态物理与光物理的交叉研究,甚至可以跨 领域推动宇宙暗物质的探测。

056801

- [36] Mong R S K, Essin A M, Moore J E. Phys. Rev. B, 2010,81: 245209
- [37] Lee D S, Kim T H, Park C H et al. Cryst. Eng. Comm, 2013, 15: 5532
- [38] Otrokov M M, Menshchikova T V, Vergniory M G et al. 2D Mater., 2017,4:025082
- [39] Gong Y, Guo JW, Li JH et al. Chin. Phys. Lett., 2019, 36:076801
- [40] Zhang D Q, Shi M J, Zhu T S et al. Phys. Rev. Lett., 2019, 122: 206401
- [41] Li J H, Li Y, Du S Q et al. Sci. Adv., 2019, 5: eaaw5685
- [42] Otrokov M M, Klimovskikh I I, Bentmann H et al. Nature, 2019, 576;416
- [43] Shi Z M, Guo Z X, Xu Z H et al. Science, 2020, 367:895
- [44] Liu C, Wang Y C, Li H et al. Nat. Mater., 2020, 19:522
- [45] Otrokov M M, Rusinov I P, Blanco-Rey M et al. Phys. Rev. Lett., 2019, 122:107202
- [46] Ge J, Liu Y Z, Li J H et al. Nat.Sci. Rev., 2020, nwaa089
- [47] Aliev Z S, Amiraslanov I R, Nasonova D I et al. J. Alloy. Compd., 2019, 789:443
- [48] Klimovskikh I I, Otrokov M M, Estyunin D et al. npj Quantum Mater., 2020, 5:54
- [49] Shi M Z, Lei B, Zhu C S et al. Phys. Rev. B, 2019, 100:155144
- [50] Tian S J, Gao S, Nie S M et al. Phys. Rev. B, 2020, 102:035144
- [51] Hu C W, Ding L, Gordon K N et al. Sci. Adv., 2020, 22; eaba4275
- [52] Zhang J L, Wang D H, Shi M J et al. Chin. Phys. Lett., 2020, 37 (7):077304
- [53] Wang H Q, Wang D H, Yang Z L et al. Phys. Rev. B, 2020, 101: 081109
- [54] Wuttig M, Yamada N. Nat. Mater., 2007, 6:824
- [55] Wang J, Lian B, Zhang S C. Phys. Rev. B, 2016, 93:045115
- [56] Wang J L, Lei C, MacDonald A H et al. 2019, arXiv: 1901.08536.
- [57] Sekine A, Nomura K. Phys. Rev. Lett., 2016, 116:096401
- [58] Ooguri H, Oshikawa M. Phys. Rev. Lett., 2012, 108:161803
- [59] Imaeda T, Kawaguchi Y, Tanaka Y et al. J. Phys. Soc. Jpn., 2019,88:024402
- [60] Coh S, Vanderbilt D, Malashevich A et al. Phys. Rev. B, 2011, 83:085108
- [61] Sheng D N, Weng Z Y, Sheng L et al. Phys. Rev. Lett., 2006, 97: 036808
- [62] Hao Y J, Liu P f, Feng Y et al. Phys. Rev. X, 2019, 9:041038
- [63] Li H, Gao S Y, Duan S F et al. Phys. Rev. X, 2019, 9:041039
- [64] Chen Y J, Xu L X, Li J H et al. Phys. Rev. X, 2019, 9:041040