Citation: | LIU Zhi-Feng, LV Zhi-Heng, ZHAO Ji-Jun. Two-dimensional Dirac materials from the perspective of spin-orbit coupling[J]. PHYSICS, 2023, 52(9): 613-624. DOI: 10.7693/wl20230903 |
[1] |
Wallace P R. Phys. Rev., 1947, 71: 622
|
[2] |
Mouras S, Hamm A, Djurado D et al. Rev. Chim. Minér, 1987, 24: 572
|
[3] |
Castro Neto A H, Guinea F, Peres N M R et al. Rev. Mod. Phys., 2009, 81: 109
|
[4] |
Haldane F D. Phys. Rev. Lett., 1988, 61: 2015
|
[5] |
Semenoff G W. Phys. Rev. Lett., 1984, 53: 2449
|
[6] |
Fradkin E. Phys. Rev. B, 1986, 33: 3257
|
[7] |
Landau L D,Lifshitz E M,Reichl L E. 1981,DOI:10.1063/ 1.2889978
|
[8] |
Peierls R. Ann. I. H. Poincare, 1935, 5: 177
|
[9] |
Novoselov K S, Geim A K, Morozov S V et al. Science, 2004, 306: 666
|
[10] |
Novoselov K S, Geim A K, Morozov S V et al. Nature, 2005, 438: 197
|
[11] |
Zhang Y, Tan Y W, Stormer H L et al. Nature, 2005, 438: 201
|
[12] |
Geim A K, Novoselov K S. Nat. Mater., 2007, 6: 183
|
[13] |
Zhao J, Liu H, Yu Z et al. Prog. Mater. Sci., 2016, 83: 24
|
[14] |
Bhimanapati G R, Lin Z, Meunier V et al. ACS Nano, 2015, 9: 11509
|
[15] |
Xu M, Liang T, Shi M et al. Chem. Rev., 2013, 113: 3766
|
[16] |
Butler S Z, Hollen S M, Cao L et al. ACS Nano, 2013, 7: 2898
|
[17] |
Yu Z M, Zhang Z, Liu G B et al. Sci. Bull., 2022, 67: 375
|
[18] |
Zhang Z, Wu W, Liu G B et al. Phys. Rev. B, 2023, 107: 075405
|
[19] |
Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95: 226801
|
[20] |
Lv B Q, Qian T, Ding H. Rev. Mod. Phys., 2021, 93: 025002
|
[21] |
Kou L, Ma Y, Sun Z et al. J. Phys. Chem. Lett., 2017, 8: 1905
|
[22] |
Weng H, Dai X, Fang Z. J. Phys. Condens. Matter., 2016, 28: 303001
|
[23] |
Ren Y, Qiao Z, Niu Q. Rep. Prog. Phys., 2016, 79: 066501
|
[24] |
Qi X L, Zhang S C. Rev. Mod. Phys., 2011, 83: 1057
|
[25] |
Hasan M Z, Kane C L. Rev. Mod. Phys., 2010, 82: 3045
|
[26] |
Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95: 146802
|
[27] |
戴希. 物理, 2016, 45: 757
|
[28] |
Huang H Q, Xu Y, Wang J F et al. Wiley Interdiscip. Rev.: Com‐ put. Mol. Sci., 2017, 7: 1296
|
[29] |
Wang Z F, Jin K H, Liu F. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017, 7: 1304
|
[30] |
Fu L, Kane C L, Mele E J. Phys. Rev. Lett., 2007, 98: 106803
|
[31] |
Armitage N P, Mele E J, Vishwanath A. Rev. Mod. Phys., 2018, 90: 015001
|
[32] |
Ishizuka H, Motome Y. Phys. Rev. Lett., 2012, 109: 237207
|
[33] |
Wang X, Li T, Cheng Z et al. Appl. Phys. Rev., 2018, 5: 041103
|
[34] |
Thouless D J, Kohmoto M, Nightingale M P et al. Phys. Rev. Lett., 1982, 49: 405
|
[35] |
Chang C Z, Liu C X, Macdonald A H. Rev. Mod. Phys., 2023, 95: 011002
|
[36] |
Young S M, Kane C L. Phys. Rev. Lett., 2015, 115: 126803
|
[37] |
Liu Z F, Feng W X, Xin H L et al. Mater. Horiz., 2019, 6: 781
|
[38] |
Cao G, Schlottmann P. Rep. Prog. Phys., 2018, 81: 042502
|
[39] |
Yao Y, Ye F, Qi X L et al. Phys. Rev. B, 2007, 75: 041401
|
[40] |
2D carbon structure database. http://www.c2d.site/2d-carbondatabase/.
|
[41] |
Chen Y, Xie Y, Yan X et al. Phys. Rep., 2020, 868: 1
|
[42] |
Fan R, Sun L, Shao X et al. ChemPhysMater, 2023, 2: 30
|
[43] |
Malko D, Neiss C, Vines F et al. Phys. Rev. Lett., 2012, 108: 086804
|
[44] |
Wang Z, Zhou X F, Zhang X et al. Nano Lett., 2015, 15: 6182
|
[45] |
Zhang L Z, Wang Z F, Wang Z M et al. J. Phys. Chem. Lett., 2015, 6: 2959
|
[46] |
Yin H, Shi X, He C et al. Phys. Rev. B, 2019, 99: 041405
|
[47] |
Kim J, Baik S S, Ryu S H et al. Science, 2015, 349: 723
|
[48] |
Feng B, Zhang J, Ito S et al. Adv. Mater., 2018, 30: 04025
|
[49] |
Olsen T, Andersen E, Okugawa T et al. Phys. Rev. Mater., 2019, 3: 024005
|
[50] |
Liu C C, Feng W, Yao Y. Phys. Rev. Lett., 2011, 107: 076802
|
[51] |
Liu C C, Jiang H, Yao Y G. Phys. Rev. B, 2011, 84: 195430
|
[52] |
Zhou M, Ming W, Liu Z et al. Proc. Natl. Acad. Sci. USA, 2014, 111: 14378
|
[53] |
Reis F, Li G, Dudy L et al. Science, 2017, 357: 287
|
[54] |
Wang X L. Phys. Rev. Lett., 2008, 100: 156404
|
[55] |
Wang X L. Natl. Sci. Rev., 2017, 4: 252
|
[56] |
Liu Z F, Liu J Y, Zhao J J. Nano Res., 2017, 10: 1972
|
[57] |
Zhang X, Wang A, Zhao M. Carbon, 2015, 84: 1
|
[58] |
Kong X, Li L, Leenaerts O et al. Nanoscale, 2018, 10: 8153
|
[59] |
Li L, Kong X, Chen X et al. Appl. Phys. Lett., 2020, 117: 143101
|
[60] |
Yu Y, Chen X, Liu X et al. Phys. Rev. B, 2022, 105: 024407
|
[61] |
Wang Z F, Liu Z, Liu F. Phys. Rev. Lett., 2013, 110: 196801
|
[62] |
Ma Y D, Dai Y, Li X R et al. Carbon, 2014, 73: 382
|
[63] |
Wang Z F, Su N H, Liu F. Nano Lett., 2013, 13: 2842
|
[64] |
Wang A Z, Zhang X M, Feng Y P et al. J. Phys. Chem. Lett., 2017, 8: 3770
|
[65] |
Xing J, Jiang X, Liu Z et al. Nanoscale, 2022, 14: 2023
|
[66] |
Tang C, Zhang C, Jiang Z et al. J. Mater. Chem. C, 2019, 7: 5792
|
[67] |
He J J, Ma S Y, Lyu P B et al. J. Mater. Chem. C, 2016, 4: 2518
|
[68] |
He J J, Li X, Lyu P B et al. Nanoscale, 2017, 9: 2246
|
[69] |
Sun Q, Kioussis N. Phys. Rev. B, 2018, 97: 094408
|
[70] |
Wang Y P, Li S S, Zhang C W et al. J. Mater. Chem. C, 2018, 6: 10284
|
[71] |
You J Y,Zhang Z,Gu B et al. Phys. Rev. Appl.,2019,12: 024063
|
[72] |
Zhou M,Liu Z,Ming W et al. Phys. Rev. Lett.,2014,113: 236802
|
[73] |
Li Y C, West D, Huang H Q et al. Phys. Rev. B, 2015, 92: 201403
|
[74] |
Gao T, Gao Y B, Chang C Z et al. ACS Nano, 2012, 6: 6562
|
[75] |
Jin Y J, Zheng B B, Xiao X L et al. Phys. Rev. Lett., 2020, 125: 116402
|
[76] |
Guan S, Liu Y, Yu Z M et al. Phys. Rev. Mater., 2017, 1: 054003
|
[77] |
Li S, Liu Y, Wang S S et al. Phys. Rev. B, 2018, 97: 045131
|
[78] |
Ding X, Ge Y, Jia Y et al. ACS Nano, 2022, 16: 21546
|
[79] |
Meng W, Liu Y, Yu W W et al. Mater. Today Phys., 2022, 27: 100774
|
[80] |
Wang J. Phys. Rev. B, 2017, 95: 115138
|
[81] |
Young S M, Wieder B J. Phys. Rev. Lett., 2017, 118: 186401
|
[82] |
Chen Z G, Wang L, Song Y et al. Phys. Rev. Lett., 2017, 119: 096401
|
[83] |
Li S, Liu Y, Yu Z M et al. Phys. Rev. B, 2019, 100: 205102
|
[84] |
Kowalczyk P J, Brown S A, Maerkl T et al. ACS Nano, 2020, 14: 1888
|
[85] |
Liu Z, Li L, Cui L et al. Nanoscale Horiz., 2021, 6: 283
|
[86] |
Bampoulis P,Castenmiller C,Klaassen D J et al. Phys. Rev. Lett., 2023, 130: 196401
|
[1] | FENG Xiao, XU Yong, HE Ke, XUE Qi-Kun. Introduction to topological quantum materials[J]. PHYSICS, 2022, 51(9): 624-632. DOI: 10.7693/wl20220904 |
[2] | ZHOU Li-Qin, XU Yuan-Feng, WENG Hong-Ming, FANG Zhong. Magnetic Weyl semimetal materials[J]. PHYSICS, 2020, 49(12): 807-816. DOI: 10.7693/wl20201202 |
[3] | LIU Yang, CAO Chao, WU Fan, YUAN Hui-Qiu. Topological Kondo semimetals[J]. PHYSICS, 2020, 49(9): 602-610. DOI: 10.7693/wl20200905 |
[4] | ZHANG Zhi-Wang, CHENG Ying, LIU Xiao-Jun. Topological phase transition and edge states in two-dimensional acoustic systems[J]. PHYSICS, 2017, 46(10): 677-683. DOI: 10.7693/wl20171004 |
[5] | QIU Chun-Yin, LU Jiu-Yang, LIU Zheng-You. Valley transport in sonic crystals[J]. PHYSICS, 2017, 46(1): 21-28. DOI: 10.7693/wl20170103 |
[6] | DAI Xi. Topological phases and transitions in condensed matter systems[J]. PHYSICS, 2016, 45(12): 757-768. DOI: 10.7693/wl20161201 |
[7] | YAO Shun-Yu, DENG Ke, ZHOU Shu-Yuni. A brief introduction to type-II Weyl semimetals[J]. PHYSICS, 2016, 45(10): 635-639. DOI: 10.7693/wl20161002 |
[8] | WAN Xian-Gang. Topological Weyl semimetals[J]. PHYSICS, 2015, 44(07): 427-439. DOI: 10.7693/wl20150702 |
[9] | Z2 topological invariant and topological insulators[J]. PHYSICS, 2011, 40(07): 462-468. |
[10] | Topological insulators[J]. PHYSICS, 2010, 39(08): 564-569. |