• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Yang, LI Yu-Bo, SHEN Cheng-Ping. Evidence of a new excited charmed baryon at Belle[J]. PHYSICS, 2023, 52(4): 249-253. DOI: 10.7693/wl20230404
Citation: LI Yang, LI Yu-Bo, SHEN Cheng-Ping. Evidence of a new excited charmed baryon at Belle[J]. PHYSICS, 2023, 52(4): 249-253. DOI: 10.7693/wl20230404

Evidence of a new excited charmed baryon at Belle

More Information
  • Received Date: October 26, 2022
  • Available Online: April 11, 2023
  • A charmed baryon is a kind of baryon containing at least one charm quark. There exist abundant excited charmed baryons, and the study of charmed baryon spectroscopy is very important for understanding the dynamics of light quarks in the environment of a heavy quark, and for testing heavy-quark symmetry and the chiral symmetry of light quarks. The Λ+c baryon is the lightest charmed baryon, which is an isospin singlet composed of one charm quark, one up quark and one down quark. Very recently, using a data sample of 770 million BB events collected at Υ(4S) resonance in the Belle experiment, Japan, studies were performed on the decay B0 → Σc (2455)0, ++π±p. A new structure has been found in the invariant mass distribution of Σc (2455)0, ++π± with a significance of 4.2σ including systematic uncertainty, which means that the probability of the emergence of this structure due to statistical fluctuation and various uncertainties is less than 0.002%. Its mass and width are measured to be (2913.8 ± 5.6 ± 3.8) MeV/c2 and (51.8 ± 20.0 ± 18.8) MeV, respectively. No known excited charmed baryon can match the observed new structure. It is probably a new excited Λc baryon, tentatively named as Λc (2910)+.
  • [1]
    Barnes V E et al. Phys. Rev. Lett.,1964,12:204
    [2]
    Gell-Mann M. Phys. Lett.,1964,8:214;Phys. Rev. Lett.,1964, 12:155;Zweig G. CERN Report 8419/TH.401,1964;CERN Report 8419/TH.412;Lichtenberg D B,Rosen S P. Developments in the Quark Theory of Hadrons. Nonantum,MA:Hadrnic Press, 1980
    [3]
    Greenberg O W. Phys. Rev. Lett.,1964,13:598
    [4]
    Aubert J J et al. Phys. Rev. Lett.,1974,33:1404
    [5]
    Augustin J E et al. Phys. Rev. Lett.,1974,33:1406
    [6]
    Herb S W et al. Phys. Rev. Lett.,1977,39:252
    [7]
    Abe F et al. Phys. Rev. Lett.,1995,74:2626
    [8]
    Particle Data Group,Zyla P A et al. Prog. Theor. Exp. Phys., 2020,2020:083C01
    [9]
    Aaij R et al. Phys. Rev. Lett.,2017,119:112001
    [10]
    Cheng H Y. Chin. J. Phys.,2022,78:324
    [11]
    Aubert B et al. Phys. Rev. Lett.,2007,98:012001
    [12]
    Mizuk R et al. Phys. Rev. Lett.,2007,98:262001
    [13]
    Aaij R et al. J. High Energy Phys.,2017,1705:030
    [14]
    Ebert D,Faustov R N,Galkin V O. Phys. Rev. D,2011,84:014025
    [15]
    Chen B,Wei K W,Liu X et al. Eur. Phys. J. C,2017,77:154
    [16]
    Capstick S,Isgur N. Phys. Rev. D,1986,34:280
    [17]
    Chen B,Liu X,Zhang A. Phys. Rev. D,2015,92:034005
    [18]
    Brodzicka J et al. Prog. Theor. Exp. Phys.,2012,2012:04D001
    [19]
    Fu X et al. Phys. Rev. Lett.,1997,79:3125
    [20]
    Dytman S A et al. Phys. Rev. D,2002,66:091101
    [21]
    Park K S et al. Phys. Rev. D,2007,75:011101;Kim H O et al. Phys. Lett. B,2008,669:287
    [22]
    Lees J P et al. Phys. Rev. D,2013,87:092004
    [23]
    Li Y B et al. Phys. Rev. Lett.,2023,130:031901
    [24]
    Azizi K,Sarac Y,Sundu H. Eur. Phys. J. C,2022,82:920
    [25]
    Kou E et al. Prog. Theor. Exp. Phys.,2019,2019:123C01
  • Related Articles

    [1]QIN Ya-Yuan, SHEN Yao, CHEN Gang, ZHAO Jun. Magnetic frustration and quantum fluctuation in rare-earth triangular-lattice magnets[J]. PHYSICS, 2021, 50(7): 454-462. DOI: 10.7693/wl20210703
    [2]LIU Zheng-Xin, WANG Xiao-Qun, ZHANG Qing-Ming. Spring in the desert of magnets——quantum spin liquids[J]. PHYSICS, 2021, 50(7): 429-442. DOI: 10.7693/wl20210701
    [3]SUN Pei-Jie, ZHAO Heng-Can. Quantum phase transitions in geometrically frustrated heavy-fermion compounds[J]. PHYSICS, 2020, 49(9): 579-585. DOI: 10.7693/wl20200902
    [4]CHEN Shuang, WU Jia-Min, SHI Yu-Sheng. General introduction of 3D printing materials and their applications[J]. PHYSICS, 2018, 47(11): 715-724. DOI: 10.7693/wl20181104
    [5]WANG Tian-Yu, SONG Qi, HAN Wei. Spin-orbit torque[J]. PHYSICS, 2017, 46(5): 288-298. DOI: 10.7693/wl20170503
    [6]CT invariant quantum spin Hall effect in ferromagnetic graphene[J]. PHYSICS, 2010, 39(06): 416-418.
    [7]The spin-orbit interaction and spin current[J]. PHYSICS, 2008, 37(08): 594-599.
    [8]Experimental observation of relativistic effects on the electronic wavefunction in molecules[J]. PHYSICS, 2008, 37(08): 576-578.
    [9]Kitaev model and topological quantum phase transitions[J]. PHYSICS, 2007, 36(07): 511-515.
  • Cited by

    Periodical cited type(2)

    1. 王艳红,符鹏,卢红成. 一维量子反铁磁性材料研究简介. 铸造技术. 2023(01): 15-22 .
    2. 徐豪,承舒凡,鲍嵩,温锦生. 强关联材料霍尔热导率实验测量综述(英文). 物理学进展. 2022(05): 159-183 .

    Other cited types(9)

Catalog

    Article views (202) PDF downloads (1080) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return