• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
PENG Jin-Bo, JIANG Ying. qPlus sensor based atomic force microscope[J]. PHYSICS, 2023, 52(3): 186-195. DOI: 10.7693/wl20230306
Citation: PENG Jin-Bo, JIANG Ying. qPlus sensor based atomic force microscope[J]. PHYSICS, 2023, 52(3): 186-195. DOI: 10.7693/wl20230306

qPlus sensor based atomic force microscope

More Information
  • Received Date: December 01, 2022
  • Available Online: March 13, 2023
  • Scanning probe microscope (SPM), which includes scanning tunneling microscope (STM) and atomic force microscope (AFM), can obtain the morphology and rich physical properties of surfaces at atomic and molecular scales via raster-scanning the sample with a sharp tip. Since its invention, SPM has led to a paradigm shift in the understanding and perception of matter. In recent years, the emergence of qPlus-type force sensors with high-quality factor has pushed the resolution and sensitivity of SPM to a new level, providing unprecedented opportunities for the precise detection and manipulation of chemical structures, charge states, electronic states, and spin states. Here we will first briefly describe the historical development and basic working principles of AFM, then focus on the advantages of qPlus-AFM and its representative applications in single atoms, single molecules and low-dimensional materials. Finally, we give an overview of its future development trends and potential applications.
  • [1]
    Binnig G, Rohrer H. Rev. Mod. Phys., 1987, 59:615
    [2]
    Binnig G. Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. 1986, US Patent No.:4, 724, 318
    [3]
    Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56:930
    [4]
    Giessibl F J. Rastertunnel-und Rasterkraftmikroskopie bei 4.2 K im Ultrahochvakuum. Ph.D. thesis, 1991
    [5]
    Ohnesorge F, Binnig G. Science, 1993, 260:1451
    [6]
    Peng J, Guo J, Ma R et al. Surf. Sci. Rep., 2022, 77:100549
    [7]
    Albrecht T R, Grutter P, Horne D et al. J.Appl. Phys., 1991, 69:668
    [8]
    Gildemeister A E,Ihn T,Barengo C et al. Rev. Sci. Instrum., 2007, 78:013704
    [9]
    Sader J E, Jarvis S P. Appl. Phys. Lett., 2004, 84:1801
    [10]
    Giessibl F J. Rev. Sci. Instrum., 2019, 90:011101
    [11]
    Giessibl F J. Rev. Mod. Phys., 2003, 75:949
    [12]
    Giessibl F J, Hembacher S, Herz M et al. Nanotechnology, 2004, 15:S79
    [13]
    Giessibl F J. Vorrichtung zum beruehrungslosen Abtasten einer Oberflaeche und Verfahren dafuer. 1996,German Patent DE:19633546
    [14]
    Tian Y et al. Science, 2022, 377:315
    [15]
    Gross L, Mohn F, Moll N et al. Science, 2009, 325:1110
    [16]
    Peng J B et al. Nat. Commun., 2018, 9:112
    [17]
    van der Lit J, Di Cicco F, Hapala P et al. Phys. Rev. Lett., 2016, 116:096102
    [18]
    Monig H et al. ACS Nano., 2016, 10:1201
    [19]
    Giessibl F J, Hembacher S, Bielefeldt H et al. Science, 2000, 289:422
    [20]
    Lennard-Jones J E, Dent B M. Trans. Faraday. Society, 1928, 24:92
    [21]
    Schneiderbauer M, Emmrich M, Weymouth A et al. Phys. Rev. Lett., 2014, 112:166102
    [22]
    Peng J et al. Nature, 2018, 557:701
    [23]
    Ma R et al. Nature, 2020, 577:60
    [24]
    Zhang J et al. Science, 2013, 342:611
    [25]
    Gross L et al. Science, 2012, 337:1326
    [26]
    Emmrich M et al. Science, 2015, 348:308
    [27]
    de Oteyza D G et al. Science, 2013, 340:1434
    [28]
    Gröning O et al. Nature, 2018, 560:209
    [29]
    Wastl D S, Weymouth A J, Giessibl F J. Phys. Rev. B, 2013, 87:245415
    [30]
    Giessibl F J, Reichling M. Nanotechnology, 2005, 16:S118
    [31]
    Setvin M et al. Science, 2018, 359:572
    [32]
    Sokolović I et al. Proceedings of the National Academy of Sciences, 2020, 117:14827
    [33]
    Wagner M, Meyer B, Setvin M et al. Nature, 2021, 592:722
    [34]
    Pielmeier F, Giessibl F J. Phys. Rev. Lett., 2013, 110:266101
    [35]
    Gross L et al. Science, 2009, 324:1428
    [36]
    Mohn F, Gross L, Moll N et al. Nat. Nanotechnol., 2012, 7:227
    [37]
    Mallada B et al. Science, 2021, 374:863
    [38]
    Steurer W,Fatayer S,Gross L et al. Nat. Commun.,2015,6:8353
    [39]
    Fatayer S et al. Nat. Nanotechnol., 2018, 13:376
    [40]
    Fatayer S et al. Phys. Rev. Lett., 2021, 126:176801
    [41]
    Patera L L, Queck F, Scheuerer P et al. Nature, 2019, 566:245
    [42]
    Peng J et al. Science, 2021, 373:452
    [43]
    Ternes M, Lutz C P, Hirjibehedin C F et al. Science, 2008, 319:1066
    [44]
    Kawai S et al. Science, 2016, 351:957
    [45]
    Huber F et al. Science, 2019, 366:235
    [46]
    Bian K et al. Nat. Commun., 2021, 12:2457
    [47]
    Zheng W et al. Nat. Phys., 2022, 18:1317
    [48]
    Humphris A D L, Tamayo J, Miles M J. Langmuir, 2000, 16:7891
    [49]
    Jahng J et al. Appl. Phys. Lett., 2015, 106:083113
    [50]
    Xu J Y et al. Science, 2021, 371:818
    [51]
    Schirhagl R, Chang K, Loretz M et al. Annu. Rev. Phys. Chem., 2014, 65:83
  • Related Articles

    [1]ZHANG Xian-Ping, MA Yan-Wei. Recent developments of iron-based superconductor wires and tapes[J]. PHYSICS, 2020, 49(11): 737-746. DOI: 10.7693/wl20201102
    [2]DU Zeng-Yi, YANG Huan, WEN Hai-Hu. Unified picture for the order parameter and mechanism of iron based superconductors[J]. PHYSICS, 2018, 47(1): 1-14. DOI: 10.7693/wl20180101
    [3]LUO Hui-Qian. Iron-based superconductivity,then and now[J]. PHYSICS, 2014, 43(07): 430-438. DOI: 10.7693/wl20140701
    [4]Neutron scattering study on iron based high-temperature superconducting materials[J]. PHYSICS, 2011, 40(08): 535-540.
    [5]Theoretical study of the electronic structures and magnetic properties of intercalated ternary iron-selenide superconductors[J]. PHYSICS, 2011, 40(08): 527-534.
    [6]Angle-resolved photoemission spectroscopy studies on new iron-based superconductors[J]. PHYSICS, 2011, 40(08): 523-526.
    [7]Microstructure and structure phase transition in iron-based superconductors[J]. PHYSICS, 2011, 40(08): 516-522.
    [8]First-principles studies on iron (nickel)-based superconductors[J]. PHYSICS, 2009, 38(09): 651-659.
    [9]Long-range antiferromagnetism in Fe-based superconductors[J]. PHYSICS, 2009, 38(09): 644-650.
    [10]New iron-pnictide superconductors[J]. PHYSICS, 2009, 38(09): 609-616.

Catalog

    Article views (924) PDF downloads (1511) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return