• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Rui, WANG Wei-Hua. Lunar glasses[J]. PHYSICS, 2022, 51(10): 681-690. DOI: 10.7693/wl20221002
Citation: ZHAO Rui, WANG Wei-Hua. Lunar glasses[J]. PHYSICS, 2022, 51(10): 681-690. DOI: 10.7693/wl20221002

Lunar glasses

More Information
  • Received Date: August 29, 2022
  • Available Online: October 24, 2022
  • Published Date: August 29, 2022
  • Glass is an important component of lunar soil produced by a series of nonequilibrium processes on the Moon, including volcanic eruptions, meteorite impacts, and solar wind and cosmic ray irradiations. Glasses can exist stably for a long geologic time in the Moon's harsh environment. They can therefore act as snapshots of their formation processes to record billions of years of historical information of the Moon, concerning the formation and evolution of the Moon, the source and distribution of lunar water/gases, the impact history of our solar system and the space weathering. Glasses can also preserve various lunar materials for an extremely long time, such as 3He implanted by solar wind, reaction-generated water and nanophase iron particles, which affect the utilization of lunar resources and remote-sensing observations. Based on detailed studies of diverse glasses in Chang'e-5 lunar samples, this paper describes the characteristics and formation mechanisms of various lunar glasses, and the unique role of each kind of glasses in recording the Moon's history. The studies of lunar glasses could also provide valuable insights into future interstellar exploration, as well as the design and preparation of novel glass materials.
  • [1]
    Zellner N E B, Norman M D, Jourdan F. Compositions and Ages of Apollo 15 Lunar Impact and Volcanic Glasses:Next Results. in 44th Annual Lunar and Planetary Science Conference. 2013, 2539
    [2]
    Delano J W, Zellner N E B, Barra F et al. Meteorit. Planet. Sci., 2007, 42:993
    [3]
    Li C L, Hu H, Yang M F et al. Natl. Sci. Rev., 2022, 9:nwab188
    [4]
    Xiao Z Y, Yan P, Wu B et al. Science Bulletin, 2021, 67:355
    [5]
    Wang W H. Progress in Physics, 2013, 33:177
    [6]
    Angell C A. Science, 1995, 267:1924
    [7]
    Heiken G H, Vaniman D T, French B M. Lunar Sourcebook:A User's Guide to the Moon. Cambridge University Press, 1991
    [8]
    Delano J W, Livi K. Geochim. Cosmochim. Acta, 1981, 45:2137
    [9]
    Zellner N E B. J. Geophys. Res.:Planets, 2019, 124:2686
    [10]
    Bibring J P, Duraud J P, Durrieu L et al. Science, 1972, 175:753
    [11]
    Bibring J P,Langevin Y,Maurette M et al. Earth Planet. Sci. Lett., 1974, 22:205
    [12]
    Nichols R H J, Hohenberg C M, Olinger C T. Geochim. Cosmo-chim. Acta, 1994, 58:1031
    [13]
    Hapke B, Cassidy W, Wells E. The Moon, 1975, 13:339
    [14]
    Keller L P, McKay D S. Science, 1993, 261:1305
    [15]
    Hapke B. J. Geophys. Res.:Planets, 2001, 106:10039
    [16]
    Canup R M, Asphaug E. Nature, 2001, 412:708
    [17]
    Yokota S, Terada K, Saito Y et al. Sci. Adv., 2020, 6:eaba1050
    [18]
    Saal A E, Hauri E H. Sci. Adv., 2021, 7:eabe4641
    [19]
    Culler T S, Becker T A, Muller R A et al. Science, 2000, 287:1785
    [20]
    Saal A E, Hauri E H, Cascio M L et al. Nature, 2008, 454:192
    [21]
    Saal A E, Hauri E H, Van Orman J A et al. Science, 2013, 340:1317
    [22]
    Sunshine J M, Farnham T L, Feaga L M et al. Science, 2009, 326:565
    [23]
    Liu Y, Guan Y B, Zhang Y X et al. Nat. Geosci., 2012, 5:779
    [24]
    Pieters C M, Taylor L A, Noble S K et al. Meteorit. Planet. Sci., 2000, 35:1101
    [25]
    Sasaki S, Nakamura K, Hamabe Y et al. Nature, 2001, 410:555
    [26]
    Pieters C M, Noble S K. J. Geophys. Res.:Planets, 2016, 121:1865
    [27]
    Cao H J, Wang C, Chen J et al. Geophys. Res. Lett., 2022, 49:e2022GL099282
    [28]
    Zhang H, Zhang X, Zhang G et al. Sci. China:Phys. Mech. As-tron., 2022, 65:1
    [29]
    Li Q L, Zhou Q, Liu Y et al. Nature, 2021, 600:54
    [30]
    Che X C, Nemchin A, Liu D Y et al. Science, 2021, 374:887
    [31]
    Hu S, He H C, Ji J L et al. Nature, 2021, 600:49
    [32]
    Liu J J, Liu B, Ren X et al. Nat. Commun., 2022, 13:1
    [33]
    Tian H C, Wang H, Chen Y et al. Nature, 2021, 600:59
    [34]
    Zhao R, Xiao D D, Shen L Q et al. Glasses as a Recorder of the Moon's Mysteries. to be submitted, 2022
    [35]
    Zhao Y, Chen Z Q, Zhang B et al. Ultrastable Lunar Glasses. to be submitted, 2022
    [36]
    Li A, Chen X, Song L J et al. Materials Futures, 2022, 1:035101
    [37]
    Ryder G, Delano J W, Warren P H et al. Geochim. Cosmochim. Acta, 1996, 60:693
    [38]
    Delano J W. J. Geophys. Res.:Solid Earth, 1986, 91:201
    [39]
    Wetzel D T, Hauri E H, Saal A E et al. Nat. Geosci., 2015, 8:755
    [40]
    Chapman D R. Geochim. Cosmochim. Acta, 1964, 28:841
    [41]
    Mueller G, Hinsch G W. Nature, 1970, 228:254
    [42]
    Pugh M J. Nature, 1972, 237:158
    [43]
    Bastin J A. Nature, 1980, 283:108
    [44]
    Tartèse R, Anand M, Gattacceca J et al. Space Sci. Rev., 2019, 215:1
    [45]
    Jia M N, Yue Z Y, Di K C et al. Earth Planet. Sci. Lett., 2020, 541:116272
    [46]
    Hörz F, Brownlee D E, Fechtig H et al. Planet. Space Sci., 1975, 23:151
    [47]
    Yang Y Z, Li S, Zhu M H et al. Nat. Astron., 2022, 6:207
    [48]
    Steele A, McCubbin F M, Fries M et al. Science, 2010, 329:51
    [49]
    Zhao Y, Shang B S, Zhang B et al. Sci. Adv., 2022, 8:eabn3623
    [50]
    Ruta B, Pineda E, Evenson Z. J. Phys.:Condens. Matter, 2017, 29:503002
    [51]
    Zhao J, Simon S L, McKenna G B. Nat. Commun., 2013, 4:1783
    [52]
    Ito K, Moynihan C T, Angell C A. Nature, 1999, 398:492
    [53]
    Starukhina L V. Adv. Space Res., 2006, 37:50
    [54]
    Housley R M, Grant R W, Paton N E. Geochim. Cosmoschim. Acta, 1973, 3:2737
    [55]
    Li S, Milliken R E. Sci. Adv., 2017, 3:e1701471
    [56]
    Pieters C M, Goswami J, Clark R et al. Science, 2009, 326:568
    [57]
    Wittenberg L J, Santarius J F, Kulcinski G L. Fusion Technol., 1986, 10:167
    [58]
    Nakamura E, Makishima A, Moriguti T et al. Proc. Natl. Acad. Sci., 2012, 109:E624
    [59]
    Keller L P, McKay D S. Geochim. Cosmochim. Acta, 1997, 61:2331
    [60]
    Zhang S L, Keller L P. Space Weathering Effects in Lunar Soils:the Roles of Surface Exposure Time and Bulk Chemical Compo-sition. in 42nd Lunar and Planetary Science Conference. 2011
    [61]
    Noguchi T, Nakamura T, Kimura M et al. Science, 2011, 333:1121
    [62]
    Naser M Z. Prog. Mater. Sci., 2019, 105:100577
    [63]
    Debenedetti P G, Stillinger F H. Nature, 2001, 410:259
    [64]
    Hecksher T, Nielsen A I, Olsen N B et al. Nat. Phys., 2008, 4:737
    [65]
    Kauzmann W. Chem. Rev., 1948, 43:219
  • Related Articles

    [1]LUO Yong. Academic contribution of Klaus Hasselmann,winner of the 2021 Nobel Prize in Physics to climate change attribution[J]. PHYSICS, 2022, 51(1): 24-28. DOI: 10.7693/wl20220104
    [2]LIN Yan-Luan. From radiative-convective equilibrium to global climate models——an introduction to the work of the 2021 Nobel laureate in Physics, Syukuro Manabe[J]. PHYSICS, 2022, 51(1): 16-23. DOI: 10.7693/wl20220103
    [3]ZHU Zong-Hong, WANG Yun-Yong. The prediction,detection and discovery of gravitational wave[J]. PHYSICS, 2016, 45(5): 300-310. DOI: 10.7693/wl20160504
    [4]DUAN Rui-Xin, ZHAO Hong-Wei, ZHU Yi-Ming. Drug detection by terahertz time-domain spectroscopy[J]. PHYSICS, 2013, 42(11): 781-787. DOI: 10.7693/wl20131103
    [5]JIN Biao-Bing, SHAN Wen-Lei, GUO Xu-Guang, QIN Hua. Terahertz detectors[J]. PHYSICS, 2013, 42(11): 770-780. DOI: 10.7693/wl20131102
    [6]Nuclear physics,and nuclear detection and analysis technology[J]. PHYSICS, 2012, 41(05): 301-308.
    [7]Direct detection of dark matter[J]. PHYSICS, 2011, 40(03): 161-167.
    [8]Direct detection of dark matter[J]. PHYSICS, 2011, 40(03): 161-167.
    [9]Physical problems in the global climate change[J]. PHYSICS, 2009, 38(02): 71-83.
    [10]Applications of single molecule fluorescence detection in life science[J]. PHYSICS, 2007, 36(11): 879-885.
  • Cited by

    Periodical cited type(5)

    1. 瞿宇阳,文田田,刘佳敏,阎平. 气候变化下菟丝子属3种植物在中国的潜在地理分布. 干旱区研究. 2025(01): 97-107 .
    2. 高志伟,刘佳,陈艳,钟爱华. 中国降水对热带太平洋海温的滞后响应特征探讨. 干旱气象. 2024(02): 209-216 .
    3. 周杰,王旭虎,杜维波,周晓雷,杨洁,张晓玮. 气候变化背景下的天山云杉潜在分布区预测. 干旱区研究. 2024(07): 1167-1176 .
    4. 吕姗姗. 近42年农安县气温变化特征分析. 农业灾害研究. 2023(05): 52-54 .
    5. 雷前坤,邱洋,李苍龙,陈瑞. 复杂性科学的机遇及挑战——2021年诺贝尔物理学奖解读. 信阳师范学院学报(自然科学版). 2022(04): 683-689 .

    Other cited types(7)

Catalog

    Article views (363) PDF downloads (1812) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return