• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Le-Tian, YUAN Hong, SUN Chang-Pu. Brownian motion theory and its application in the study of complex climate systems[J]. PHYSICS, 2022, 51(9): 588-601. DOI: 10.7693/wl20220901
Citation: CHEN Le-Tian, YUAN Hong, SUN Chang-Pu. Brownian motion theory and its application in the study of complex climate systems[J]. PHYSICS, 2022, 51(9): 588-601. DOI: 10.7693/wl20220901

Brownian motion theory and its application in the study of complex climate systems

More Information
  • Received Date: August 06, 2022
  • Available Online: October 24, 2022
  • This paper will recall the work of Klaus Hasselmann, a German scientist who won the 2021 Nobel Prize in physics, from the perspective of the development of nonequilibrium statistical physics. Based on Brownian motion theory, he established a stochastic climate model to describe the long-term evolution of climate, as influenced by meteorological weather conditions. He also proposed an optimal fingerprint method to identify the influence of human activity and local natural variability on climate, a complex system. Hasselman’ s work was essentially a successful application of theoretical physics to complex systems. The physical method he used, Brownian motion theory, was well developed by Ming-Chen Wang, who was an outstanding Chinese female physicist, and George Eugene Uhlenbeck in the 1940s based on the work of Albert Einstein[1,2]. This paper will briefly describe the development of Brownian motion theory and the related contemporary progress of non-equilibrium statistical physics. It will be shown how Hasselman applied the relevant theories to the practical application of long-term climate prediction: (1) He established the theory that the fluctuation of the rapidly changing local weather variables affects the slowly changing global climate variables through the fluctuation-dissipation relationship; (2) He found the key factors of local“noise”and external driving forces that are crucial in affecting climate evolution through the optimal fingerprint method.
  • [1]
    Wang M C, Uhlenbeck G E. Rev. Mod. Phys., 1945, 17: 323
    [2]
    Einstein A. Ann. Physik, 1905, 17: 549
    [3]
    Parisi G, Wu Y S. Scientia Sinica, 1981, 24: 483
    [4]
    Hasselmann K. Reviews of Geophysics, 1966, 4(1): 1
    [5]
    Hasselmann K. Tellus, 1976, 28: 473
    [6]
    Frankignoul C, Hasselmann K. Tellus, 1977, 29: 289
    [7]
    Hasselmann K, Schieler M. In Eighth Symposium Naval Hydrody‐ namics, 1970, pp. 361—388
    [8]
    Hasselmann K, Hasselmann S. Journal of Geophysical Research Oceans, 1991, 96(10): 713
    [9]
    罗勇. 物理, 2022, 51(1): 24
    [10]
    陈晓松, 樊京芳. 物理, 2022, 51(1): 1
    [11]
    胡永云. 科学通报, 2022, 67(6): 548
    [12]
    樊京芳, 金瑜亮. 自然杂志, 2021, 43(6): 441
    [13]
    孙昌璞. 物理学报, 2022, 71(1): 010101
    [14]
    马克斯·玻恩. 我这一代的物理学. 北京: 商务印书馆, 2015
    [15]
    Verlinde E P. Journal of High Energy Physics, 2011, 2011: 29
    [16]
    Roos N. American Journal of Physics, 2014, 82: 1161
    [17]
    Taylor P L, Tabachnik J. European Journal of Physics, 2013, 34: 729
    [18]
    Perrin J. Ann. Chim. Phys.,1909, 18: 5
    [19]
    Ostwald W. Grundriss der allgemeinen Chemie. Leipzig W. Engel‐ mann, 1909
    [20]
    Langevin P. Comptes Rendus Acad. Sci.(Paris), 1908, 146: 530
    [21]
    Fokker A D. Ann. Physik, 1914, 43: 810
    [22]
    Planck M. Sitzungsberichte der Preussischen Akademie der Wis‐ senschaften zu Berlin. 1917: 324
    [23]
    Kolmogorov A. Mathem. Annalen, 1931, 104: 415
    [24]
    Dhont J K G. An Introduction to Dynamics of Colloids. Elsevier, 1996. p.183
    [25]
    Kramers H A. Physica, 1940, 7: 284
    [26]
    孙昌璞. 大学物理, 1984, 3(5): 48
    [27]
    刘寄星. 物理, 2004, 33(3): 8
    [28]
    彭桓武. 物理学报, 1980, 29(8): 1084
    [29]
    Yu L H, Sun C P. Physical Review A, 1994, 48: 592
    [30]
    Sun C P, Yu L H. Physical Review A, 1995, 51: 1845
    [31]
    Phillips N A. Quarterly Journal of the Royal Meteorological So‐ ciety, 1956, 82(352): 123
    [32]
    Saltzman B. A Survey of Statistical-Dynamical Models of the Terrestrial Climate. Elsevier, 1978
    [33]
    Hasselmann K. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Shaw D B Ed., Meteorology of Tropical Oceans. London: Roy Meteorol Soc., 1979. p.251
    [34]
    von Storch H. From Decoding Turbulence to Unveiling the Fin‐ gerprint of Climate Change. Springer Nature, 2022
    [35]
    Hasselmann K. Journal of Climate, 1993, 6(10): 1957
    [36]
    Hasselmann K. Climate Dynamics, 1997, 13(9): 601
    [37]
    Allen M R, Tett S F B. Climate Dynamics, 1999, 15(6): 419
    [38]
    Weaver A J,Zwiers F W. Nature, 2000, 407(6804): 571
    [39]
    IPCC. 2021 Summary for Policymakers. https://www. ipcc. ch/ srccl/chapter/summary-for-policymakers/.
    [40]
    Hasselmann K. Physics Essays, 1996, 9: 311
    [41]
    Hasselmann K. Physics Essays, 1996, 9: 460
    [42]
    Hasselmann K. Physics Essays, 1997, 10: 64
    [43]
    Hasselmann K. Physics Essays, 1997, 10: 269
  • Related Articles

    [1]LIU Hai-Guang. Making molecular movies with X-ray free electron lasers[J]. PHYSICS, 2021, 50(9): 620-629. DOI: 10.7693/wl20210906
    [2]TAI Ren-Zhong. X-ray physics[J]. PHYSICS, 2021, 50(8): 501-511. DOI: 10.7693/wl20210802
    [3]ZHANG Wen-Kai, KONG Qing-Yu, WENG Tsu-Chien. Applications of femtosecond X-ray techniques in chemistry and energy materials science[J]. PHYSICS, 2018, 47(8): 504-514. DOI: 10.7693/wl20180803
    [4]SUN Zhi-Bin, FAN Jia-Dong, JIANG Huai-Dong. Single particle imaging with X-ray free electron lasers[J]. PHYSICS, 2018, 47(8): 491-502. DOI: 10.7693/wl20180802
    [5]HE Jian-Hua, XU Chun-Yan. Application of X-ray free electron laser crystallography in structural biology[J]. PHYSICS, 2018, 47(7): 437-445. DOI: 10.7693/wl20180704
    [6]Recent inertial confinement fusion experiments and diagnostic techniques on the shenguang laser facility[J]. PHYSICS, 2010, 39(08): 531-542.
    [7]Applications of synchrotron radiation-based techniques in studying the structure and properties of disordered alloys[J]. PHYSICS, 2009, 38(07): 489-495.
    [8]Switching effect of spontaneous emission of polarized atoms in two-dimensional photonic crystals[J]. PHYSICS, 2006, 35(10): 804-806.
    [9]The change in microstructure of plant seeds induced by low energy ion implantation[J]. PHYSICS, 2002, 31(09).
    [10]Characteristics of the decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. PHYSICS, 2002, 31(08).
  • Cited by

    Periodical cited type(18)

    1. 应梓剑,陈建波,徐金江,于谦,何璇,赵雪燕,朱春华,黄石亮,杨希,李诗纯. 面向含能材料化学领域的先进分析表征技术发展与展望. 含能材料. 2025(01): 82-101 .
    2. 何煦,孟立民,马云灿,林鹤,李军,叶雁. 高重复频率飞秒激光高效加工硬X射线复合折射透镜. 中国激光. 2024(16): 295-303 .
    3. 商琨琳,李正恒,鞠旭东,周悦,怀平,刘志. 高帧频面探测器分布式数据获取软件研究. 核技术. 2024(10): 109-117 .
    4. 于春蕾,陈广花,丁建国,李明,肖庆雯,阎映炳. SHINE加速器快联锁系统设计与开发. 核技术. 2024(12): 27-35 .
    5. 张少军,郭智,成加皿,王勇,陈家华,刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报. 2023(10): 262-272 .
    6. 尹亮,曾孟麒,尹聪聪,怀平. SHINE束线站定时系统束团编号的数据采集. 核技术. 2023(06): 3-9 .
    7. 曾孟麒,尹亮,尹聪聪,怀平. 基于EPICS的SHINE束线站定时设备控制系统. 核技术. 2023(07): 25-33 .
    8. 戴一帆,彭小强,薛帅,蒋庄德. 高性能光学制造. 机械工程学报. 2023(21): 1-14 .
    9. 刘欣慰,刘海广,张文凯. X射线自由电子激光及其在超快结构动力学研究中的应用. 中国科学:物理学 力学 天文学. 2022(07): 191-214 .
    10. 王雨芹. X射线自由电子激光装置. 科学技术创新. 2022(30): 30-34 .
    11. 周逸媚,冷用斌,陈健,曹珊珊,许兴懿,赖龙伟. 基于腔式探头的束团到达时间测量算法优化. 原子能科学技术. 2022(10): 2104-2112 .
    12. 王东兴,朱燕燕,李瑞,胡志敏. 磁调制DCCT调制噪声及测量方法研究. 原子能科学技术. 2021(01): 178-184 .
    13. 王东兴,朱燕燕,周力任,李瑞,武万锋,胡志敏. 磁调制DCCT温漂相关因素灰色关联分析. 强激光与粒子束. 2021(03): 74-81 .
    14. Jiawei Yan,Nanshun Huang,Haixiao Deng,Bo Liu,Dong Wang,Zhentang Zhao. First observation of laser–beam interaction in a dipole magnet. Advanced Photonics. 2021(04): 51-56 .
    15. 邰仁忠. X射线物理学. 物理. 2021(08): 501-511 . 本站查看
    16. 赵晨行,卢启鹏,宋源,龚学鹏,王依,徐彬豪. 自由电子激光光束线反射镜无应力夹持设计与分析. 中国光学. 2020(04): 787-794 .
    17. 李鹏,黎明,吴岱,周征,唐淳. 我国自由电子激光技术发展战略研究. 中国工程科学. 2020(03): 35-41 .
    18. 孙洋,张未卿,杨学明. “大连相干光源”为化学反应中的分子“拍电影”. 科技导报. 2019(21): 26-31 .

    Other cited types(22)

Catalog

    Article views (287) PDF downloads (2886) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return