• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
HE Ke. From magnetically doped to intrinsic magnetic topological insulators——a road towards the high temperature quantum anomalous Hall effect[J]. PHYSICS, 2020, 49(12): 828-836. DOI: 10.7693/wl20201204
Citation: HE Ke. From magnetically doped to intrinsic magnetic topological insulators——a road towards the high temperature quantum anomalous Hall effect[J]. PHYSICS, 2020, 49(12): 828-836. DOI: 10.7693/wl20201204

From magnetically doped to intrinsic magnetic topological insulators——a road towards the high temperature quantum anomalous Hall effect

More Information
  • Received Date: November 14, 2020
  • Published Date: December 11, 2020
  • Among the existing topological quantum effects, the quantum anomalous Hall effect is arguably the most promising one for wide practical applications, but the main challenge is the ultra-low temperature required. In this article we describe the mechanism of the quantum anomalous Hall effect in magnetic topological insulators and the key factors that determine its occurring temperature. Recent efforts over the past years to elevate this temperature is reviewed, particularly the latest studies on the intrinsic magnetic topological insulator MnBi2Te4. Based on this, we present a roadmap on how to further raise the temperature of the effect in magnetic topological insulator-based systems.

  • Related Articles

    [1]SUN Zhe-Xin, CUI Teng-Fei, CHU Xiang-Qiang. Neutron spin echo spectrometer: advanced in studying protein domain motions[J]. PHYSICS, 2024, 53(3): 174-184. DOI: 10.7693/wl20240306
    [2]WANG Rong-Ming, LIU Jia-Long, SONG Yuan-Jun. Progress and applications of in situ transmission electron microscopy[J]. PHYSICS, 2015, 44(02): 96-105. DOI: 10.7693/wl20150205
    [3]TIAN Zhen, GU Jian-Qiang, HAN Jia-Guang, J. F. O' Hara, ZHANG Wei-Li. Sensing applications of terahertz subwavelength artificial structures[J]. PHYSICS, 2013, 42(12): 838-845. DOI: 10.7693/wl20131202
    [4]Microstructure and structure phase transition in iron-based superconductors[J]. PHYSICS, 2011, 40(08): 516-522.
    [5]Applications of synchrotron radiation-based techniques in studying the structure and properties of disordered alloys[J]. PHYSICS, 2009, 38(07): 489-495.
    [6]Silicon reconstructed surfaces and phase transitions[J]. PHYSICS, 2008, 37(09): 628-630.
    [7]Quantum phase transitions and geometric phases[J]. PHYSICS, 2006, 35(11): 919-923.
    [8]The layered structure, mechanical properties and high pressure phases change of the earth′s mantle[J]. PHYSICS, 2005, 34(02): 115-122.
    [9]Magnetic stripe domains in coupled magnetic sandwiches[J]. PHYSICS, 2005, 34(02): 104-108.
    [10]The liquid structure of metals[J]. PHYSICS, 2003, 32(05).
  • Cited by

    Periodical cited type(1)

    1. 商姊萌,王博维,韩伟华. 基于原子体系人造晶格构建量子模拟器. 微纳电子技术. 2024(08): 108-121 .

    Other cited types(4)

Catalog

    Article views (378) PDF downloads (1715) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return