• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Hui-Jun, ZHANG Qi, WANG Feng, HAN Yi-Long. Glass studies in colloidal systems[J]. PHYSICS, 2019, 48(2): 69-81. DOI: 10.7693/wl20190201
Citation: ZHANG Hui-Jun, ZHANG Qi, WANG Feng, HAN Yi-Long. Glass studies in colloidal systems[J]. PHYSICS, 2019, 48(2): 69-81. DOI: 10.7693/wl20190201

Glass studies in colloidal systems

More Information
  • Received Date: January 14, 2019
  • Published Date: February 11, 2019
  • Glasses are disordered solids composed of atoms, molecules, polymers or colloids etc. Glasses are ubiquitous in daily life and have broad applications in industry. However, the theoretical understanding of glassy materials, especially the glass transition, remains a highly controversial area in physics. Colloidal particles in liquid suspensions can form various phases such as crystals, liquids, and glasses. Micrometer-sized colloidal particles can be directly observed even inside the three-dimensional bulk phase using optical microscopy and their Brownian motions can be tracked by image analysis. Such dynamics of individual particles in bulk can hardly be measured in atomic or molecular systems. Here we review the studies of glasses using colloidal model systems. We mainly focus on the transition from supercool liquid to glass, and briefly discuss the crossover between glass and other disordered or partially disordered states such as polycrystals, gels, and vapors.
  • Related Articles

    [1]LUO Yong. Academic contribution of Klaus Hasselmann,winner of the 2021 Nobel Prize in Physics to climate change attribution[J]. PHYSICS, 2022, 51(1): 24-28. DOI: 10.7693/wl20220104
    [2]LIN Yan-Luan. From radiative-convective equilibrium to global climate models——an introduction to the work of the 2021 Nobel laureate in Physics, Syukuro Manabe[J]. PHYSICS, 2022, 51(1): 16-23. DOI: 10.7693/wl20220103
    [3]ZHU Zong-Hong, WANG Yun-Yong. The prediction,detection and discovery of gravitational wave[J]. PHYSICS, 2016, 45(5): 300-310. DOI: 10.7693/wl20160504
    [4]DUAN Rui-Xin, ZHAO Hong-Wei, ZHU Yi-Ming. Drug detection by terahertz time-domain spectroscopy[J]. PHYSICS, 2013, 42(11): 781-787. DOI: 10.7693/wl20131103
    [5]JIN Biao-Bing, SHAN Wen-Lei, GUO Xu-Guang, QIN Hua. Terahertz detectors[J]. PHYSICS, 2013, 42(11): 770-780. DOI: 10.7693/wl20131102
    [6]Nuclear physics,and nuclear detection and analysis technology[J]. PHYSICS, 2012, 41(05): 301-308.
    [7]Direct detection of dark matter[J]. PHYSICS, 2011, 40(03): 161-167.
    [8]Direct detection of dark matter[J]. PHYSICS, 2011, 40(03): 161-167.
    [9]Physical problems in the global climate change[J]. PHYSICS, 2009, 38(02): 71-83.
    [10]Applications of single molecule fluorescence detection in life science[J]. PHYSICS, 2007, 36(11): 879-885.
  • Cited by

    Periodical cited type(5)

    1. 瞿宇阳,文田田,刘佳敏,阎平. 气候变化下菟丝子属3种植物在中国的潜在地理分布. 干旱区研究. 2025(01): 97-107 .
    2. 高志伟,刘佳,陈艳,钟爱华. 中国降水对热带太平洋海温的滞后响应特征探讨. 干旱气象. 2024(02): 209-216 .
    3. 周杰,王旭虎,杜维波,周晓雷,杨洁,张晓玮. 气候变化背景下的天山云杉潜在分布区预测. 干旱区研究. 2024(07): 1167-1176 .
    4. 吕姗姗. 近42年农安县气温变化特征分析. 农业灾害研究. 2023(05): 52-54 .
    5. 雷前坤,邱洋,李苍龙,陈瑞. 复杂性科学的机遇及挑战——2021年诺贝尔物理学奖解读. 信阳师范学院学报(自然科学版). 2022(04): 683-689 .

    Other cited types(7)

Catalog

    Article views (255) PDF downloads (2180) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return