• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
QIU Chun-Yin, LU Jiu-Yang, LIU Zheng-You. Valley transport in sonic crystals[J]. PHYSICS, 2017, 46(1): 21-28. DOI: 10.7693/wl20170103
Citation: QIU Chun-Yin, LU Jiu-Yang, LIU Zheng-You. Valley transport in sonic crystals[J]. PHYSICS, 2017, 46(1): 21-28. DOI: 10.7693/wl20170103

Valley transport in sonic crystals

More Information
  • Received Date: November 26, 2016
  • Published Date: January 11, 2017
  • Like the spin in spintronics, the valley index in solid-state materials can be viewed as a new carrier of information, which is useful for designing modern electronic devices. Recently, we have applied the concept of valleytronics to sonic crystals, revealed the vortex nature of valley states, and established valley-selection rules. Interestingly, the acoustic valley states can be stimulated directly by external sound, and detected through the field distributions inside and outside the crystal. The vortex chirality-locked valley transport enables a novel manipulation of sound. Considering the interaction between sound and matter, other fancy applications can also be anticipated for the valley vortex states, such as rotating micro-particles. In addition, we find that there exist two kinds of topologically distinct acoustic valley Hall phases, and an interface separating them can host topologically-protected edge states, associated with many exotic transport properties (such as valley selective excitations and antireflection in bent corners).
  • [1]
    Rycerz A,Tworzydlo J,Beenakker C W J. Nature Phys.,2007,3:172
    [2]
    Xiao D,YaoW,Niu Q. Phys. Rev. Lett.,2007,99:236809
    [3]
    Gorbachev R V,Song J C W,Yu G L et al. Science,2014,346:448
    [4]
    Xu X,YaoW,Xiao D et al. Nature Phys.,2014,10:343
    [5]
    Mak K F,McGill K L,Park J et al. Science,2014,344:1489
    [6]
    Yablonovitch E. Phys. Rev. Lett.,1987,58:2059
    [7]
    Sigalas M M,Economou E N. J. Sound and Vib.,1992,158:377
    [8]
    Painter O. Science,1999,284:1819
    [9]
    Khelif A,Choujaa A,Benchabane S et al. Appl. Phys. Lett.,2004,84:4400
    [10]
    Wu F G,Liu Z Y,Liu YY. Phys. Rev. E,2004,69:066609
    [11]
    Qiu C Y,Zhang X D,Liu Z Y. Phys. Rev. B,2005,71:054302
    [12]
    Huang X Q,Lai Y,Hang Z H et al. Nat. Mater.,2011,10:582
    [13]
    Schwartz T,Bartal G,Fishman S et al. Nature,2007,446:52
    [14]
    Trompeter H,Krolikowski W,Neshev D N et al. Phys. Rev.Lett.,2006,96:053903
    [15]
    Zhang X D. Phys. Rev. Lett.,2008,100:113903
    [16]
    Lu L,Joannopoulos J D,Soljačić M. Nat. Photonics,2014,8:821
    [17]
    Lu J Y,Qiu C Y,Ke M Z et al. Phys. Rev. Lett.,2016,116:093901
    [18]
    Semenoff G W,Semenoff V,Zhou F. Phys. Rev. Lett.,2008,101:087204
    [19]
    Martin I,Blanter Y M,Morpurgo A F. Phys. Rev. Lett.,2008,100:036804
    [20]
    Zhang F,Jung J,Fiete G A et al. Phys. Rev. Lett.,2011,106:156801
    [21]
    Qiao Z,Jung J,Niu Q et al. Nano Lett.,2011,11:3453
    [22]
    Zhang F,MacDonald A H,Mele E J. Proc. Natl. Acad. Sci. USA,2013,110:10546
    [23]
    Vaezi A,Liang Y,Ngai D H et al. Phys. Rev. X,2013,3:021018
    [24]
    Ju L,Shi Z,Nair N et al. Nature,2015,520:650
    [25]
    Li J,Wang K,McFaul K et al. Nature Nanotech.,doi:10.1038/nnano.2016.158
    [26]
    Lu J Y,Qiu C Y,Liu Z Y et al. Valley-projected optic edge modes in photonic crystals. 2016,in submission
    [27]
    Chen X D,Chen M,Dong JW. 2016,arXiv:1606.08717
    [28]
    Lu J Y,Qiu C Y,Xu S J et al. Phys. Rev. B,2014,89:134302
    [29]
    Zhang L F,Niu Q. Phys. Rev. Lett.,2014,112:085503
    [30]
    Volke-Sepulveda K,Santillan A O,Boullosa R R. Phys. Rev. Lett.,2008,100:024302
    [31]
    Anhauser A,Wunenburger R,Brasselet E. Phys. Rev. Lett.,2012,109:034301
    [32]
    Lu J Y,Qiu C Y,Ye L P et al. Observation of topolgical valley transport of sound in sonic crystal. Nat. Phys. 2016,DOI:10.1038/nphys3999
  • Related Articles

    [1]ZHENG Yuan-Lin, CHEN Xian-Feng. Integrated nonlinear photonics on thin-film lithium niobate: a route to an all-optical information era[J]. PHYSICS, 2024, 53(1): 22-32. DOI: 10.7693/wl20240103
    [2]LI Meng, LI Chu, LI Yan. Glass-based integrated quantum photonic chips: from 2D to 3D[J]. PHYSICS, 2023, 52(8): 542-551. DOI: 10.7693/wl20230803
    [3]TIAN Xiao-Hui, SHANG Ming-Hao, ZHU Shi-Ning, XIE Zhen-Da. Lithium niobate based photonic quantum devices and integration technology: opportunities and challenges[J]. PHYSICS, 2023, 52(8): 534-541. DOI: 10.7693/wl20230802
    [4]QIANG Xiao-Gang, HUANG Jie, WANG Yang, SONG Hai-Jing. Integrated silicon quantum photonics[J]. PHYSICS, 2023, 52(8): 524-533. DOI: 10.7693/wl20230801
    [5]CHENG Ya. Photonic integrated circuits on lithium niobate: today′s fundamental research for tomorrow′s industry[J]. PHYSICS, 2020, 49(5): 277-284. DOI: 10.7693/wl20200501
    [6]LI Xian-Yao, YU Yu-De, YU Jin-Zhong. Thermo-optic, electro-optic, and all-optical switches and arrays[J]. PHYSICS, 2013, 42(04): 272-279. DOI: 10.7693/wl20130405
    [7]Novel photonic sensor engine for discrimination and detection of weeds and crops[J]. PHYSICS, 2010, 39(10): 699-712.
    [8]Photonic crystal integrated optical devices[J]. PHYSICS, 2008, 37(09): 658-665.
    [9]Comparison between electronic and photonic systems[J]. PHYSICS, 2002, 31(09).
    [10]Characteristics of the decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps[J]. PHYSICS, 2002, 31(08).

Catalog

    Article views (151) PDF downloads (1432) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return