• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YANG Min, MA Guan-Cong, YANG Zhi-Yu, SHEN Ping. Low frequency acoustic sinks[J]. PHYSICS, 2016, 45(8): 520-527. DOI: 10.7693/wl20160806
Citation: YANG Min, MA Guan-Cong, YANG Zhi-Yu, SHEN Ping. Low frequency acoustic sinks[J]. PHYSICS, 2016, 45(8): 520-527. DOI: 10.7693/wl20160806

Low frequency acoustic sinks

More Information
  • Received Date: September 08, 2015
  • Published Date: August 11, 2016
  • An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that, by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and become impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies,or converted into other forms of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% has been achieved. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions. With its thickness less than the peak absorption wavelength by two orders of magnitude, the resonant cell itself can be treated as an acoustic sink, acting as a time-reversal counterpart for an acoustic point source.
  • [1]
    Ma G,Yang M,Xiao S et al. Nature Materials,2014,13:873
    [2]
    De Rosny J,Fink M. Phys. Rev. Lett.,2002,89:124301
    [3]
    Derode A,Roux P,Fink M. Phys. Rev. Lett.,1995,75:4206
    [4]
    Fink M. Phys. Today,1997,50(3):34
    [5]
    Arenas J P,Crocker M J. J. Sound Vib.,2010,44:12
    [6]
    Maa D Y. J. Acoust. Soc. Am.,1998,104:2861
    [7]
    Fuchs H V,Zha X. Acta Acust. United Acc.,2006,92:139
    [8]
    Maa D Y. Int. J. Acoust. Vib.,2007,12:3
    [9]
    Liang Z,Li J. Phys. Rev. Lett.,2012,108:114301
    [10]
    Liang Z,Feng T,Lok S et al. Sci. Rep.,2013,3:1614
    [11]
    Xie Y,Popa B I,Zigoneanu L et al. Phys. Rev. Lett.,2013,110:175501
    [12]
    Xie Y,Konneker A,Popa B I et al. Appl. Phys. Lett.,2013,103:201906
    [13]
    Scheuren J. Handbook of Engineering Acoustics. Springer,2013. 301—334
    [14]
    Yu N,Genevet P,Kats MA et al. Science,2011,334:333
    [15]
    Ni X,Emani N K,Kildishev A V et al. Science,2012,335:427
    [16]
    Kildishev A V,Boltasseva A,Shalaev V M. Science,2013,339:1232009
    [17]
    Yin X,Ye Z,Rho J et al. Science,2013,339:1405
    [18]
    Chong Y,Ge L,Cao H et al. Phys. Rev. Lett.,2010,105:053901
    [19]
    WanW,Chong Y,Ge L et al. Science,2011,331:889
    [20]
    Pu M,Feng Q,Wang M et al. Opt. Express,2012,20:2246
    [21]
    Park J J,Lee K J B,Wright O B et al. Phys. Rev. Lett.,2013,110:244302
    [22]
    Fleury R,Alù A. Phys. Rev. Lett.,2013,111:055501
    [23]
    Yang Z,Mei J,Yang M et al. Phys. Rev. Lett.,2008,101:204301
    [24]
    Yang Z,Dai H,Chan N et al. Appl. Phys. Lett.,2010,96:041906
    [25]
    Mei J,Ma G,Yang M et al. Dynamic Mass Density and Acoustic Metamaterials. In:Acoustic Metamaterials and Phononic Crystals. Springer, 2013. 159—199
    [26]
    Ma G,Yang M,Yang Z et al. Appl. Phys. Lett.,2013,103:011903
    [27]
    Yang M,Ma G,Yang Z et al. Phys. Rev. Lett.,2013,110:134301
    [28]
    Mei J,Ma G,Yang M et al. Nature Commun.,2012,3:756
    [29]
    Yang M,Ma G,Wu Y et al. Phys. Rev. B,2014,89:064309
    [30]
    Horowitz S B,Sheplak M. J. Acoust. Soc. Am.,2013,134:4155
    [31]
    Horowitz S B,Sheplak M,Cattafesta L N et al. J. Micromech.Microeng.,2006,16:S174
    [32]
    Cha S N,Seo J S,Kim S M et al. Advanced Materials,2010,22(42):4726
    [33]
    Qin Y,Wang X,Wang Z L. Nature,2008,451:809
    [34]
    Wang X,Song J,Liu J et al. Science,2007,316:102
    [35]
    Fan F R,Tian Z Q,Wang Z L. Nano Energ.,2012,1:328
    [36]
    Zhu G, Lin Z H,Jing Q et al. Nano Lett.,2013,13(2):847
    [37]
    Fox J D,Kino G S,Khuri-Yakub B T. Appl. Phys. Lett.,1985,47:465
  • Related Articles

    [1]GU Lu-Sheng, PAN Tian-Ying, JI Wei. Nanoscale-resolution optical microscopy[J]. PHYSICS, 2023, 52(11): 772-778. DOI: 10.7693/wl20231105
    [2]LIU Sheng-Chun, LI Kun. Ultra-broadband helical-structure acoustic metamaterials[J]. PHYSICS, 2017, 46(11): 749-756. DOI: 10.7693/wl20171105
    [3]ZHU Xue-Feng, PENG Yu-Gui, SHEN Ya-Xi. Parity-time symmetric acoustics[J]. PHYSICS, 2017, 46(11): 740-748. DOI: 10.7693/wl20171104
    [4]LI Jin-Chao, ZHANG Jin, CHENG Ying, LIU Xiao-Jun. Acoustic Mie resonance and its applications[J]. PHYSICS, 2017, 46(11): 731-739. DOI: 10.7693/wl20171103
    [5]LIANG Bin, CHENG Jian-Chun. Acoustic vortices: production, manipulation and application of acoustic rbital angular momentum[J]. PHYSICS, 2017, 46(10): 658-668. DOI: 10.7693/wl20171002
    [6]HE Cheng, LU Ming-Hui, CHEN Yan-Feng. Two-dimensional photonic/phononic topological states[J]. PHYSICS, 2017, 46(1): 12-20. DOI: 10.7693/wl20170102
    [7]Development and applications of super-resolution near-field structures[J]. PHYSICS, 2009, 38(11): 804-808.
    [8]Femtosecond time-resolved optical pump-probe technique and recent developments[J]. PHYSICS, 2007, 36(05): 395-398.
    [9]Development and applications of underwater acoustic sensor network[J]. PHYSICS, 2006, 35(11): 945-952.
    [10]Application of superresolution technology in optical disks[J]. PHYSICS, 2002, 31(01).

Catalog

    Article views (310) PDF downloads (3468) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return