• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
CHEN Le-Tian, YUAN Hong, SUN Chang-Pu. Brownian motion theory and its application in the study of complex climate systems[J]. PHYSICS, 2022, 51(9): 588-601. DOI: 10.7693/wl20220901
Citation: CHEN Le-Tian, YUAN Hong, SUN Chang-Pu. Brownian motion theory and its application in the study of complex climate systems[J]. PHYSICS, 2022, 51(9): 588-601. DOI: 10.7693/wl20220901

Brownian motion theory and its application in the study of complex climate systems

More Information
  • Received Date: August 06, 2022
  • Available Online: October 24, 2022
  • This paper will recall the work of Klaus Hasselmann, a German scientist who won the 2021 Nobel Prize in physics, from the perspective of the development of nonequilibrium statistical physics. Based on Brownian motion theory, he established a stochastic climate model to describe the long-term evolution of climate, as influenced by meteorological weather conditions. He also proposed an optimal fingerprint method to identify the influence of human activity and local natural variability on climate, a complex system. Hasselman’ s work was essentially a successful application of theoretical physics to complex systems. The physical method he used, Brownian motion theory, was well developed by Ming-Chen Wang, who was an outstanding Chinese female physicist, and George Eugene Uhlenbeck in the 1940s based on the work of Albert Einstein[1,2]. This paper will briefly describe the development of Brownian motion theory and the related contemporary progress of non-equilibrium statistical physics. It will be shown how Hasselman applied the relevant theories to the practical application of long-term climate prediction: (1) He established the theory that the fluctuation of the rapidly changing local weather variables affects the slowly changing global climate variables through the fluctuation-dissipation relationship; (2) He found the key factors of local“noise”and external driving forces that are crucial in affecting climate evolution through the optimal fingerprint method.
  • [1]
    Wang M C, Uhlenbeck G E. Rev. Mod. Phys., 1945, 17: 323
    [2]
    Einstein A. Ann. Physik, 1905, 17: 549
    [3]
    Parisi G, Wu Y S. Scientia Sinica, 1981, 24: 483
    [4]
    Hasselmann K. Reviews of Geophysics, 1966, 4(1): 1
    [5]
    Hasselmann K. Tellus, 1976, 28: 473
    [6]
    Frankignoul C, Hasselmann K. Tellus, 1977, 29: 289
    [7]
    Hasselmann K, Schieler M. In Eighth Symposium Naval Hydrody‐ namics, 1970, pp. 361—388
    [8]
    Hasselmann K, Hasselmann S. Journal of Geophysical Research Oceans, 1991, 96(10): 713
    [9]
    罗勇. 物理, 2022, 51(1): 24
    [10]
    陈晓松, 樊京芳. 物理, 2022, 51(1): 1
    [11]
    胡永云. 科学通报, 2022, 67(6): 548
    [12]
    樊京芳, 金瑜亮. 自然杂志, 2021, 43(6): 441
    [13]
    孙昌璞. 物理学报, 2022, 71(1): 010101
    [14]
    马克斯·玻恩. 我这一代的物理学. 北京: 商务印书馆, 2015
    [15]
    Verlinde E P. Journal of High Energy Physics, 2011, 2011: 29
    [16]
    Roos N. American Journal of Physics, 2014, 82: 1161
    [17]
    Taylor P L, Tabachnik J. European Journal of Physics, 2013, 34: 729
    [18]
    Perrin J. Ann. Chim. Phys.,1909, 18: 5
    [19]
    Ostwald W. Grundriss der allgemeinen Chemie. Leipzig W. Engel‐ mann, 1909
    [20]
    Langevin P. Comptes Rendus Acad. Sci.(Paris), 1908, 146: 530
    [21]
    Fokker A D. Ann. Physik, 1914, 43: 810
    [22]
    Planck M. Sitzungsberichte der Preussischen Akademie der Wis‐ senschaften zu Berlin. 1917: 324
    [23]
    Kolmogorov A. Mathem. Annalen, 1931, 104: 415
    [24]
    Dhont J K G. An Introduction to Dynamics of Colloids. Elsevier, 1996. p.183
    [25]
    Kramers H A. Physica, 1940, 7: 284
    [26]
    孙昌璞. 大学物理, 1984, 3(5): 48
    [27]
    刘寄星. 物理, 2004, 33(3): 8
    [28]
    彭桓武. 物理学报, 1980, 29(8): 1084
    [29]
    Yu L H, Sun C P. Physical Review A, 1994, 48: 592
    [30]
    Sun C P, Yu L H. Physical Review A, 1995, 51: 1845
    [31]
    Phillips N A. Quarterly Journal of the Royal Meteorological So‐ ciety, 1956, 82(352): 123
    [32]
    Saltzman B. A Survey of Statistical-Dynamical Models of the Terrestrial Climate. Elsevier, 1978
    [33]
    Hasselmann K. On the Signal-to-Noise Problem in Atmospheric Response Studies. In: Shaw D B Ed., Meteorology of Tropical Oceans. London: Roy Meteorol Soc., 1979. p.251
    [34]
    von Storch H. From Decoding Turbulence to Unveiling the Fin‐ gerprint of Climate Change. Springer Nature, 2022
    [35]
    Hasselmann K. Journal of Climate, 1993, 6(10): 1957
    [36]
    Hasselmann K. Climate Dynamics, 1997, 13(9): 601
    [37]
    Allen M R, Tett S F B. Climate Dynamics, 1999, 15(6): 419
    [38]
    Weaver A J,Zwiers F W. Nature, 2000, 407(6804): 571
    [39]
    IPCC. 2021 Summary for Policymakers. https://www. ipcc. ch/ srccl/chapter/summary-for-policymakers/.
    [40]
    Hasselmann K. Physics Essays, 1996, 9: 311
    [41]
    Hasselmann K. Physics Essays, 1996, 9: 460
    [42]
    Hasselmann K. Physics Essays, 1997, 10: 64
    [43]
    Hasselmann K. Physics Essays, 1997, 10: 269
  • Related Articles

    [1]LU Jian-Hua. Carl-Gustaf Rossby and Earth System Science[J]. PHYSICS, 2023, 52(4): 225-231. DOI: 10.7693/wl20230401
    [2]HU Yong-Yun. The complex climate system and global warming[J]. PHYSICS, 2022, 51(1): 10-15. DOI: 10.7693/wl20220102
    [3]CAI Xiang-Zhou, DAI Zhi-Min, XU Hong-Jie. Thorium molten salt reactor nuclear energy system[J]. PHYSICS, 2016, 45(9): 578-590. DOI: 10.7693/wl20160904
    [4]TU Zhan-Chun. Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems[J]. PHYSICS, 2014, 43(07): 453-459. DOI: 10.7693/wl20140704
    [5]The physics questions in systems biology[J]. PHYSICS, 2012, 41(01): 25-30.
    [6]Exploring complexity ——a new realm in physics[J]. PHYSICS, 2010, 39(03): 190-195.
    [7]Quantum open system theory and its applications[J]. PHYSICS, 2010, 39(01): 1-8.
    [8]A typical type of high-performance computation: earth system modeling[J]. PHYSICS, 2009, 38(08): 569-574.
    [9]Concentrating photovoltaic system[J]. PHYSICS, 2007, 36(11): 862-868.
    [10]Frequency locking of propagating wave fronts in reaction-diffusion systems[J]. PHYSICS, 2005, 34(11): 797-800.
  • Cited by

    Periodical cited type(1)

    1. 张鹏杰. GW170817与标准汽笛宇宙学. 物理. 2019(09): 588-592 . 本站查看

    Other cited types(0)

Catalog

    Article views (287) PDF downloads (2886) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return