预警的概念及相关物理问题* ### 吴忠良12 # 蒋长胜2 (1 中国科学院研究生院地球科学学院 北京 100049) (2 中国地震局地球物理研究所 北京 100081) 摘要 预警是现代社会减轻自然灾害的工作中最重要的物理概念之一,也是在预测/预报的物理问题没有得到解决的情况下最具实际意义的技术之一.文章介绍了与预警有关的概念和物理问题,包括预报和预警的概念 现地预警和异地预警,讨论了不同领域的预警技术中共同的物理问题,包括"有限传播"原理、"连锁效应"原理、"相似放大"原理,以及实际工作对预警系统的主要技术要求. 关键词 自然灾害 预警系统 地震预警 ### Early warning: concepts, techniques, and physics WU Zhong-Liang^{1 2 ,†} JIANG Chang-Sheng² College of Earth Science , Graduate University of Chinese Academy of Sciences , Beijing 100049 , China) Institute of Geophysics , China Earthquake Administration , Beijing 100081 , China) Abstract Early warning is one of the most important physical concepts in the reduction of natural disasters for modern society. Prediction/forecast face intrinsic difficulties in physics, so early warning plays a most critical role in practical applications for sustainability. We review the basic concepts and physics of early warning, including the difference between prediction/forecast and early warning, front detection early warning and on-site early warning, and the common physical problems of early warning systems in different fields-finite propagation, the ripple effect, and scaling, as well as the main technical requirements of practical early warning systems. **Keywords** natural disasters , early warning system , earthquake early warning ### 1 预测/预报与预警 并不是所有的人对预测/预报(prediction/fore-cast)和预警(early warning)都有一个清晰的认识. 一个普遍流传的说法是患有关节炎的人往往比气象学家更能准确地' 预报 "天气的变化. 这个说法混淆了预测/预报和预警这两个本质上不同的概念:前者是对还没有发生的事情做出描述,后者是对业已开始、并且正在发生的事情做出描述. 在患有关节炎的人感到不适、并且觉得" 好像要下雨"的时候,与下雨有关的天气过程实际上已经开始,空气中的气压和湿度都发生了变化. 最后下雨的过程,不过是整个 变化过程中的一幕——当然是最重要的一幕.这个已经开始发生的过程,对于任何人来说都是可以感知的,患有关节炎的人就更敏感一些.可是,如果试图对一个月以后是否会下雨做出预测/预报,那就是非常困难的事情了.事实上,现在非线性动力学的研究表明,这种预测/预报至少在一些情况下甚至是无法做到的. 如果所讨论的问题是战争 ,那么预测/预报就是 对对方什么时候将会发动多大规模的进攻的一种描述 ,而预警则是在对方的进攻打响之后 ,对" 进攻已 ^{*} 国家重点基础研究发展计划(批准号 2004CB418406)资助项目 2007-01-12 收到 通讯联系人. Email :wuzhl@ gucas. ac. cn 经开始"的一种描述. 但这并不等于说预警是很容易的事情,因为此时此刻你只知道对方"已经开始了进攻",但你并不知道对方在这次进攻中最终会投入多少兵力,以及将以怎样的部署进行攻击. 预警的目的,正是要通过对对方的兵力部署的有效判断,采取有针对性的措施. 换句话说,从实际应用的角度,导致有效的应对措施,是一条信息能够称为真正意义上的"预警信息"的一个必要条件. 预警可以分成两类[1]:一类是以"威胁"为目标 的预警,称为异地预警(front detection early warning),它专门监测"威胁"的出现,一旦"威胁"出现, 就马上采取措施;另一类是以保护对象为目标的预 警 称为现地预警(on-site early warning),它是在保 护对象周围画一个"圈",一旦在这个"圈"上检测到 "风吹草动"就立即采取措施. 第一类预警 相当于 把岗哨设在敌人的据点周围 ,一旦敌人出动 ,就发出 警报 第二类预警 相当于把岗哨设在自己的阵地周 围,一旦发现敌人,就采取行动.显然,这两类预警有 各自的优点和不足:第一类预警由于有一定的空间 距离 在操作上可以等测到比较可靠的信号之后再 发布预警信息 因而更为可靠;但是,这类预警需要 大致知道威胁可能会发生在什么地方,这并不总是 容易做到的. 第二类预警可以对直接威胁保护对象 的事件(包括地点不可预测的事件),进行最高效率 的预警 但是 这类 兵临城下"的预警 其时间要求 很高 因而其科技含量要求也很高. ## 2 预警问题举例 预测/预报的基础是物理,预警的基础也是物理.由于任何物理过程都是以有限速度传播的,所以动态的监测常常成为预警的基础.洪水的预报一般很难.但是洪水一旦形成,沿着特定的流域,洪峰下一步将到什么地方,还是可以进行动态追踪和预警的.不过,洪峰究竟多强,还有着很大的不确定性,还要考虑天气、地势等很多因素.台风传播路径的预报通常很难.但是通过对台风的动态追踪,人们还是可以知道台风在下一步袭击的地方可能是在哪里,从而进行必要的准备.当然,台风在那里将逗留多久,能引起多强的降水,还有着很大的不确定性.人们大体上知道泥石流会在哪些地方、在什么时段发生,但泥石流到底在哪个时刻发生,怎样发生,也是难于进行预测/预报的.然而另一方面,对泥石流的传播可以进行动态监测,根据这种监测,对已经发生的泥石 流在下一步将要袭击的地方发出预警也是可能的, 尽管这种预警信息也同样有着比较大的不确定性. 对小行星撞击地球,目前预测预报的能力还有限.一 个解决方案是,对地球周边的小行星进行动态监测, 如果有哪个小行星进入与地球"亲密接触"的危险 区 就立即发出预警 ,采取措施. 在一些特殊的情况 下 人们大致上已经知道哪个地方的地震对城市或 重大工程威胁最大,从而可以在这些地震的周围布 设监测系统 ,一旦地震发生 ,就立即发出预警信息. 表面上看,这类地震的"异地预警"与前面的几种预 警很不相同,但实际上,这类地震预警同样是利用了 有限传播效应——地震波的传播速度有限 或者说, 地震波传播的速度远远低于无线电波的传播速度. 1995年 在墨西哥格雷罗地区 7.3 级地震中 墨西 哥市地震预警系统 SAS(seismic alarm system)在地 震波到达墨西哥市前 72s 发出了地震警报,广播电 台、小学、住宅区等及时采取了有效的应对措施,特 别是地铁系统在地震波到达之前 50s 停止了运行. 此次地震未造成人员死亡 只有少数人员受伤 是地 震预警系统的一个成功的应用实例 2]. 一些海啸是海底发生的地震造成的 称为地震 海啸[3]. 海啸横跨大洋传播的速度 ,与一架波音飞 机的飞行速度相当. 因此 ,如果能检测到海啸 ,人们 还是有可能像战争时期看到敌方的轰炸机群起飞之 后立即发出防空警报一样 做出海啸的预警. 而如果 能迅速地检测到引起海啸的地震的发生 则地震海 啸的预警还可以争取到更多的时间. 海啸的预警分 为两类:如果在日本,如果智利发生特大地震,那么 海啸预警有若干小时的时间可以利用:但如果发生 地震的位置是日本海沟 ,那么对近海沿岸的海啸预 警的时间就短得多. 火灾的发生一般没人能做出预 报. 但一旦火灾发生,还是可以根据火势,对火灾现 场周边的地区采取措施 特别是对火灾可能会引起 "连锁反应"的地方,比如,有可能引起有毒气体泄 露的地方,有可能引起爆炸的地方,采取必要的措 施. 火灾的动力学与地震海啸的动力学很不相同,但 在这一点上,它们的预警有着相通的道理:知道前一 个过程发生了之后,可以对后面的"连锁效应"(ripple effect)进行预警. 地震的"现地预警"也许是预警问题中最为特殊、也最具挑战性的例子^[4]. 人们早就知道地震所激发的纵波(振动方向与传播方向一致的波)比横波(振动方向与传播方向垂直的波)早一些到达,并且纵波的振幅比横波的小. 这个现象可以用来进行 地震的预警. 但定量地说 ,人们可以利用的这一"时 间差"短到近乎残酷的地步. 近似地,对发生在地 壳里的浅源地震,这种时间差可以通过与地震之间 的水平距离除以 8km/s 的" 视速度 "来估计. 如果与 地震的水平距离是 100km ,例如唐山地震的时候你 在天津,那么这个时间只有十几秒,充分地利用这宝 贵的"时间差"来对诸如高速铁路之类的设施采取 应急措施 还是可以尽可能地减轻地震造成的损失. 但实际上这给人们留下的预警时间毕竟还嫌太短. 因此目前地球物理学家探讨的一个问题是,能不能 从这宝贵的时间里再"争取"几秒,即,不用等到纵 波的最大振幅 而是从最初几秒到达的信号中 就能 判断出地震到底有多大,或者用"阈值预警"的语言 说 判断出地震至少有多大. 现在发展的方法,可望 利用最初 3s 接收到的地震信号来判断地震至少有 多大,这对于地震的应急响应是必不可少的信息. 看上去,不同的预警问题的差别在于预警过程的特征时间不同. 但值得指出的是,预警系统中特征时间的"长"与"短",是个相对概念,它的参照系是可能采取的应急措施所用的特征时间. 比如,对洪峰的预警时间可以做到一天或者几天,可是,相对于防范洪水所必需的工程措施,无论是组织加固还是组织撤离,几天的时间都还是很短的. ### 3 预警的物理问题 预警的技术,从原理上说就是要充分地利用三个物理原理"有限传播"原理、"连锁效应"原理、"相似放大"原理.前两个属于已有物理知识的应用,第三个目前还属于物理研究的前沿领域. #### 3.1 "有限传播"原理 任何物理过程,其传播的速度都是有限的. 充分地利用有限的传播时间来进行预警,是一个实际可行的措施. 台风的预警、洪水的预警、泥石流的预警、小行星撞击的预警、地震的异地预警,都属于这种情况. 不同的预警技术中一个共同的问题,是这些传播过程的物理. 了解了这些过程的物理,比如火的物理、云的物理、台风的物理、洪水的物理、泥石流的物理、小行星运行的物理、地震波传播的物理,就能有效地利用有限传播效应和这种效应所带来的宝贵的时间差,采取必要的措施. 而对这些过程的物理了解得越多,在采取措施的时候就越主动. #### 3.2 "连锁效应 (ripple effect)原理 一个物理过程往往可以通过"连锁反应"的方式引发另外一个物理过程. 地震海啸的预警、火灾中化学气体的泄露和爆炸的预警等,实际上就利用了这个道理. 在实际应用中,通常不是单纯地利用这种"连锁"效应,而是把这种"连锁"效应和前面所说的有限传播效应结合起来,以获得更长的预警时间. 如何在事件刚刚发生时就能有效地判断它究竟 #### 3.3 "相似放大"(scaling)原理 能'发展到什么程度",这是一个带有一定的普遍性 并且还没有很好地解决的物理问题. 这个问题相当 于说在战斗开始时,如何在尽可能短的时间内从对 方的火力和进攻态势上对对方的部署和战斗力做出 正确的判断. 一个关键问题是 到底最少需要了解多 长时间的"局部",才能正确地描述出一个过程的 "整体"或者说"局部"和"整体"之间具有怎样的 "相似性"和"尺度效应".一般说来,所用时间越长, 得到整体概念的准确性就越大, 但另一方面, 时间越 长 对预警的实际意义就越低. 这就好像你在一个漆 黑的丛林中突然触摸到一个湿润冰凉的东西,你必 须在最短的时间里判断你所碰到的家伙有多大. 你 也许会认为只有从头摸到尾,才能知道它到底有多 大,可问题是等你从头摸到尾的时候,你的麻烦就大 了. 在这方面 地震学家的做法可能是有启发性的, 他们试图用最初 3s 的信号来判断一次持续时间可 达十几秒的地震的大小的"底线"[5]. 那么 ,怎样从 最初的信号来判断地震的整体性质呢?原理是 ,不 同大小的地震所辐射出的地震波,其频谱成分是不 同的 如同不同大小的恒星所辐射出的光的频谱是 不同的. 利用这个性质 ,最短的可供分析的信号长 度 就是能够得到可信的"平均频率"或"平均周期" 的信号的长度. 不过 地震破裂的过程没有最后结束 之前,谁也说不清它到底会有多大,所以由此而给出 的信息是" 阈值 "性质的 :地震" 至少 "有多大. 但即 使是这种很"粗"的信息,也已经足够用来采取实际 措施. 日常生活中,这个道理实际上也不难理解:丛 林中的'大家伙'"肯定不会是"细皮嫩肉"的。因此你 和它" 第一次接触 "的时候 "那" 皮糙肉厚 "的感觉本 身就应该成为你立即逃跑的预警信号 ,至于它究竟 是1吨重还是10吨重,倒不是很重要的事情. ## 4 预警的物理问题之外 预警 从本质上说不是抽象的理论概念. 预警只 有变成实用技术,才能真正发挥作用. 预警问题在技术上的复杂性,一点都不比它的物理问题差. 而从一定意义上说,对物理了解得越透,在技术上的机动性和主动性也就越大. 从技术上看,对所要防范的自然现象进行动态监测,是进行有效的预警的一个关键问题和必要条件.在动态监测的过程中,一定要进行观测数据的"实时"(real-time)传输和"实时"处理.其中一个重要的技术问题,就是如何有效地区分信号和干扰. 另一个问题是,如何在最短的时间里提取出对预警最有实际价值的信息.这里面,如何给出信息,给出什么样的信息,还是很有"学问"的."足够"和"有效"恐怕是进行预警系统的技术设计中应该首先考虑的原则.假如在北京附近发生了一次地震,大家都感受到了它的震动.人和设备需要的信息,是这次地震的精确的定位和精确的震级吗?恐怕不是.这时候人们急于知道地震是近还是远,但具体是100km 北还是150km 北北东倒不是特别重要;人们急于知道地震是大还是小,具体是6.2 级还是6.5 级倒在其次. 一个预警系统既要避免漏报(failure),又要避免虚报(false alarm).但实际上,理想的预警系统是没有的.如何根据保护对象的性质,在保证安全和避免虚报带来的负面影响之间寻求一种"平衡",这也是一个并不简单的技术问题. 还有一个非常实际的问题, 听起来有点像" 杞人忧天",就是,与特大自然灾害(所谓 extreme events)有关的预警系统在实际操作中应该如何维护、如何" 训练"(learning), 如何标定(calibration). 因为一个规律是,越大的自然灾害,发生率就越低. 根据' 墨菲定律",如果什么事情有可能往坏的方向发展, 它就一定会往最坏的方向发展, 预警系统最令人担心的问题就是,面向特大"事件"的预警系统,对中小事件看来还算"管用",可是特大事件"来了"的时候,它反而"失效"了. ## 5 结束语和讨论 我们概述了预警技术及其相关的物理问题. 我们看到在预测/预报的科学问题还没有得到解决的情况下,预警技术在实际应用方面发挥着重要作用. 我们常说的'时间就是生命",在一定意义上可以作 为不同领域的预警技术的一个共同目标,而这个"时间",确切地说",时间差",是靠科技"抢出来"的.例如,1994年美国加州北岭 6.7级地震和 1995年日本兵库县南部 7.2级地震中,当地的燃气和煤气地震紧急自动处置系统(这是专门针对重大基础设施和生命线工程,可在综合决策后自动或人工启动应急控制装置的地震预警系统),由于自动关闭装置运行良好,没有发生因可燃气体泄漏而引发的次生灾害,均取得了显著的减灾实效[6].日本正在使用的紧急地震检测和预警系统 UrEDAS(urgent earthquake detection and alarm system),使得新干线列车在多次地震中安然无恙,即使是 2004年新潟地震时,距震中太近而脱轨的列车也由于启动了紧急制动装置,列车减速及时,避免了列车倾覆和人员伤亡[7]. 随着科技和社会的发展,人们对不同类型的突发性自然过程的了解越来越多,预测预报问题作为一个科学难题久攻不下,信息技术的发展日新月异,人类对减轻灾害的要求与日俱增. 所有这一切都使得预警技术成为目前发展很快的一个研究领域,并且涉及不同的学科领域. 重要的是,在不同的学科领域中有些物理问题实际上是相通的,并且,也很有可能从这些实际问题中抽象出有意义的、带有普遍性的物理问题——所谓'巴斯德象限'[8] 实际上就是这么回事. #### 参考文献 - [1] Kanamori H, Ann. Rev. Earth Planet. Sci., 2005, 33:195 - [2] Espinosa-Aranda J , Jiménez A , Ibarrola G et al. Seism. Res. Lett. , 1995 , 66:42 - [3] Satake K. Tsunami. In: Lee W H K, Kanamori H, Jennings P C et al. (eds), International Handbook of Earthquake and Engineering Seismology. San Diego: Academic Press, 2002, 437 - [4] Wu Y M, Kanamori H. Bull. Seism. Soc. Amer., 2005, 95: 347 - [5] Wu Y M, Kanamori H. Bull. Seism. Soc. Amer., 2005, 95: 1181 - [6] 郭恩栋,李山有,赵振东等. 世界地震工程,2005,21(2):44 [Guo E D. Li S Y, Zhao Z D et al. World Information on Earthquake Engineering, 2005,21(2) 44(in Chinese)] - [7] 刘如山,林均歧,郭恩栋. 自然灾害学报,2005,14:140[Liu R S, Lin J Q, Guo E D. Journal of Natural Disasters,2005,14:140[in Chinese] - [8] Stokes D.E. Pasteur's Quadrant: Basic Science and Technological Innovation. Washington, D. C.: Brookings Institution Press, 1997, 75