激子绝缘体*

娄文凯 常 凯⁺
(1 中国科学院半导体研究所 北京 100083)
(2 中国科学院大学材料科学与光电技术学院 北京 100049)

Exciton insulators

LOU Wen-Kai CHANG Kai[†]

(1 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)

(2 College of Materials Science and Opto-Electronic Technology, University of Chinese

Academy of Sciences, Beijing 100049, China)

摘要 激子绝缘体是20世纪60年代初由诺贝尔物理学奖获得者莫特提出的一种新物相。众所周知,激子是固态系统中最典型的集体激发之一,简单地可视为电子—空穴由于库仑相互作用而形成的束缚对。在常规绝缘体或半导体材料中,单粒子能隙远大于激子束缚能。而在某些特殊的材料体系,如窄能隙半导体和二维材料中,激子的束缚能可能大于体系的单粒子能隙,因此体系内会自发形成大量的激子,进入激子绝缘体相。激子绝缘体是体系的基态,低浓度下激子可视为组合玻色子,在低温下会形成宏观相干态——激子玻色—爱因斯坦凝聚。文章简要地回顾了激子绝缘体的发展历史,并介绍了激子绝缘体、玻色—爱因斯坦凝聚和自旋超流的最新进展。

关键词 激子绝缘体,窄能隙半导体,二维材料,激子凝聚,自旋超流

Abstract An excitonic insulator is a new quantum phase proposed by the Nobel Prize winner in physics Nevill Mott in the early 1960s. It is well known that excitons are bound pairs formed by electron-hole Coulomb interaction in insulator and semiconductor systems where, traditionally, the single-particle energy gap is much larger than the exciton binding energy. However, in some specific materials, such as narrow-gap semiconductors and two-dimensional materials, this is reversed and a large number of excitons are spontaneously formed in the system, which becomes an exciton insulator and is the ground state. At low concentrations, excitons can be regarded as composite bosons, a macroscopic quantum coherent phase, thus an exciton Bose-Einstein condensate can be observed at low temperatures. This paper briefly reviews the history of exciton insulators, as well as recent progresses on exciton insulator phases and spin superfluidity.

Keywords excitonic insulators, narrow-gap semiconductors, two-dimensional materials, exciton condensation, spin superfluidity

* 国家自然科学基金(批准号: 11974340)资助项目

約22・51卷 (2022年)5期

† email: kchang@semi.ac.cn DOI: 10.7693/wl20220502

1 引言

在过去的几十年中,凝聚态物理领域发现了 形形色色的宏观量子物态。对称性与多体相互作 用共同导致复杂的集体行为,产生了许多奇特的 量子现象。两者之间的相互影响对理解量子材料 中宏观效应的微观起源具有重要意义。激子绝缘 相^{11–51}的形成就是这种相互影响的一个典型特例。

激子是半导体或绝缘体中广泛存在的一种典型的元激发或准粒子。简单地看,绝缘体中激子是电子—空穴通过库仑相互作用结合而形成的一种束缚对。在半导体中激子态有两种典型的情况:一种是弗伦克尔(Frankel)激子,电子—空穴束缚能大,激子玻尔半径小,局域在分子上,此类激子多见于分子晶体中;另一类则是万尼尔(Wannier)激子,电子—空穴束缚能小,玻尔半径

图1 (a)电子一空穴体系在参数空间中的相图;(b)电子一空 穴等离子体或者是半金属;(c)激子绝缘体,电子和空穴在此 时是弱结合,就像库珀对一样;(d)由具有有限质心动量的 玻色子粒子组成的激子气体;(e)激子玻色一爱因斯坦凝聚 态,其中激子态是简并的。在(b)一(e)中,蓝点代表电子, 红点代表空穴,椭圆虚线表示电子与空穴的强结合,带箭头 的虚线表示电子与空穴的弱结合,单箭头表示中心激子的质 心运动^[25]

远大于晶格常数,万尼尔激子在半导体中十分常见。半导体中的激子在低浓度下可视为一种组合 玻色子。那么一个自然的问题是,半导体中激子 是否可以实现玻色—爱因斯坦凝聚态(BEC)?

关于激子凝聚这个有趣的话题,长期以来学 界一直存在争议。原因是通常玻色-爱因斯坦凝 聚都是指玻色子凝聚到体系的基态。而半导体中 的激子则是体系的激发态。在绝缘体中光激发产 生的激子通常由于自发辐射光子而迅速复合,激 子寿命很短(例如GaAs中的激子寿命是0.39 ns), 这成为形成激子BEC的主要障碍^[6,7]。处于激发态 的激子的宏观相干性已有明确的实验证据,但由 于不是系统的基态,至今激子BEC的实验证据尚 存在争议。在半导体材料中,人们更多地利用激 子与光子强耦合形成的激子极化激元来实现 BEC^[8]。激子极化激元同时继承了激子和光的属 性,如极低的有效质量、较强的非线性效应、高 速传播以及外场调控的敏感性等等。人们已经在 更高温度区域实现了激子极化激元的凝聚相和相 干激射[8-11]。

那么是否存在激子为基态的体系呢? 这个有 趣的问题早在20世纪60年代初,诺贝尔物理学奖 获得者内维尔·弗朗西斯·莫特(Nevill Francis Mott)教授就提出了理论设想^[1]。莫特认为在半金 属中,如果载流子浓度比较低,并且有足够强的 库仑相互作用束缚电子--空穴形成激子,那么系 统的基态将不是半金属相,而进入一种新的物质 状态——激子绝缘体。随后前苏联物理学家Keldysh 等人进一步将激子绝缘相拓展到窄禁带半导 体中^[2, 12]。他们认为当激子束缚能大于带隙时, 系统将失稳,大量自发形成激子而降低系统能 量, 使系统趋向于一种能隙更大的稳定状态: 激 子绝缘体。人们期待电阻会出现峰值,可以作为 判断激子绝缘体存在的证据[13]。此时虽然体系中 激子是基态,但相位不是相干的。Keldysh、Rice 和诺贝尔奖获得者 Kohn 等人进一步指出^[2-5],这 种激子宏观地凝聚到一种新的基态的过程,可以 类比如超导体的形成过程,它们的相变都是由于 相互作用引起的。与常规BCS超导体中通过交换 虚声子而形成库珀对的凝聚不同,激子绝缘体是

通过库仑相互作用形成的电子—空穴对发生凝 聚。另外还有Zittartz、Fenton、Ebisawa等人也系 统地研究了激子绝缘体的掺杂效应^[14]、各向异 性^[15]和输运性质^[16],磁场下的激子绝缘体行为^[17], 以及激子绝缘体的霍尔效应^[18]。

在随后的几十年中,人们也提出在一些半导体材料,如1T相二硒化钛(1T-TiSe₂)^[13,19]、钽镍硒 (Ta₂NiSe₅)^[20-23]、铥硒碲(TmSe_{0.45}Te_{0.55})^[24]等材料中 发现激子绝缘体存在的证据,但这些激子绝缘相 的实验研究一直存在争议。问题的关键是材料能 隙的打开是否一定是由于激子绝缘相的存在。能 隙打开的机制可能存在多种原因,如晶格畸变、 电荷密度波、自旋密度波和超导等,因此仅仅观 察到能隙打开并不能确认是激子绝缘相。在常规 半导体中,激子寿命相对较短(纳秒量级)也增加 了实验的难度。总的来说,从20世纪60年代至 今,人们始终保持着对激子绝缘体的研究热情, 期待通过研究的努力能寻找到一个实际材料体 系,观察并确证激子绝缘体。

近年来,半导体低维系统的制备技术日益提高,使得人们可以精确地制备各种半导体低维结构,在这些低维系统中形成激子绝缘体的条件得以满足:窄能隙的能带结构、强激子束缚能和弱库仓屏蔽,从而使激子绝缘体的研究成为可能(图1(a)—(e))^[25]。目前有两种材料体系最受人关注,分别是半导体量子阱结构和层状二维材料。前者样品制备精确干净,但晶格匹配的异质结材料不够普遍,需要在一些特定的材料之间才能形成高质量界面的异质结,如GaAs/AlGaAs,InAs/GaSb等。而二维材料的范德瓦尔斯异质结之间则无需考虑晶格匹配的问题,可以形成更为广泛的异质结。

2 拓扑激子绝缘相

对大多数半导体材料来说,激子寿命短,并 且与能隙相比,激子束缚能很小。以GaAs体材料 为例^[26],激子束缚能约为4 meV,远小于其能隙 (约1.4 eV),即便考虑量子阱情形^[27,28],其激子 束缚能最大也不过为体材料情形的4倍,约为

线为价带顶,蓝色球代表电子局域与InAs 层,红色球代表 空穴局域与GaSb 层; (b) 8带*k*·*p*有效哈密顿量模型计算的 InAs/GaSb 量子阱的能带结构^[25]

16 meV。所以在大部分常规半导体材料中难以实现激子绝缘体。因此,很自然地认为激子绝缘体 应该存在于窄能隙半导体体系中。另一方面,电 子一空穴在库仑吸引力的作用下极容易发生复 合,难以形成长寿命的激子。为了便于开展激子 物理的实验研究,人们将电子和空穴进行实空间 或/和动量空间的分离,这样可以大大地延长激子 的寿命。L. V. Butov实验组首次在GaAs耦合半导 体量子阱中施加垂直电场,诱导电子和空穴的空 间分离^[29],实现了宏观相干的激子凝聚。但需要 指出的是,此类体系中激子仍是系统的激发态。 因此为了实现激子绝缘体,人们搜寻着新的材料 体系。

在典型的窄能隙半导体中,有一类被诺贝尔 物理学奖获得者 Kroemer 教授称为6.1Å 家族的半 导体材料,即InAs、GaSb和AISb^[30]。这类材料晶 格常数十分匹配,可以生长出高质量的异质结界 面,特别是InAs/GaSb量子阱体系的光电特性尤 其引人注目。它具有独特的能带结构,可以在本 征样品中自发地形成空间分离的电子层(InAs 层) 和空穴层(GaSb 层)(图 2(a),(b))。这种特别的带 阶构造被称为III型异质结^[29,3]-36]。由于电子和空 穴分离在两层中,所以形成的激子寿命长,这为 研究激子物理提供了绝好的实验平台。

InAs/GaSb 量子阱的研究始于 20 世纪 70 年 代^[37],1987年人们在理论上提出该体系是优异的 红外材料^[38],可以实现红外探测器。随着分子 束外延技术的提高,1990年至2000年,人们制备 出中红外 3—5 μm 波段的红外探测器面降^[39,40], 2005年扩充至 20 μm 以上的远红外波段^[41]。2008

图3 激子绝缘体存在于InAs/GaSb量子阱中的电输运证据 (a)实验测量装置图;(b)在30 mK 处用 Corbino 器件测量 σ_∞的前栅极偏 置电压依赖性,在 B₀从0T到35T变化过程中,零电导一直出现,该零电导不随磁场大小变化,表明体系在磁场变化的过程中能隙 是一直存在的;(c)使用8带自洽模型计算的能带,在 B₀=0T、9T、18T和35T处具有典型的倒带^[25]

图4 (a)激子绝缘体的色散关系;(b)激子绝缘体的联合态密度;(c)太赫兹吸收谱, 在插图中,紫色层代表InAs量子阱,红色层代表GaSb量子阱,黄色波表示太赫兹 光,黑色虚线圆圈表示聚焦太赫兹光束在样品位置的横向范围;(d)激子绝缘体序参 量与温度的关系;(e)实验测得的拓扑边缘态,在介观H-bar结构(内插图)中进行非局 部电阻测量,边缘电流路径在插图中显示为红色和绿色箭头^[25]

年张首晟等人理论预言该体系是二维拓扑绝缘 体^[42],并随后由莱斯大学杜瑞瑞组实验证实^[43, 44]。 在该系统中观察到了拓扑边缘态输运,这种边缘 态输运即使在强磁场和高温下还能较好保持。值 得指出的是,与HgTe量子阱实验观测到的边缘态 电导平台相比, InAs/GaSb的电导平台更平整和 更接近量子化平台,因此该体系的基态可能呈现 出激子绝缘体^[25]。InAs/GaSb量子阱具有独特的带 阶结构(图2(a), (b)),即使没有光 激发也可以自发地形成空间分离 的电子和空穴层,因此它是形成 激子物理的一个天然体系。该体 系能带翻转打开的反常能隙约为 4 meV 左右,而激子束缚能的大 小也相仿。理论上猜想在该体系 中可能形成激子绝缘相,并同时 具有拓扑特性: 激子绝缘体具有 无耗散的螺旋边缘态。近来人们 从实验和理论两方面研究了InAs/ GaSb量子阱中的激子绝缘相。实 验组从电子输运观测到(实验示意 图如图3(a)所示):在低温且低电 子一空穴对密度的 InAs/GaSb 量 子阱器件中,能隙不随平面内磁 场的变化而变化(图3(b))。而单粒 子能谱计算表明(图3(c)),较小的 面内磁场就会关闭能隙,实验观 察和单粒子的计算结果大相径 庭。为了理解和解释两者之间的

差异,利用量子多体理论,作者建立了温度依赖 的激子绝缘体的多体理论模型,发现体系的基态 会出现激子绝缘相,并提出可以利用太赫兹透射 谱来验证激子绝缘相的存在。太赫兹透射谱表现 出两个吸收峰(图4(a),(b)),并且实验测量的太 赫兹吸收峰位与理论预言结果一致(图4(c)),解决 了长期以来激子绝缘相光学观测的问题。同时, 电输运测量发现能隙不依赖于面内磁场强度,而 显著依赖于电子一空穴浓度和体系温度(图4(d)), 另外体系还存在螺旋边缘态的导电行为(图4(e)), 这些测量结果进一步佐证体系进入了二维拓扑激 子绝缘体态^[25,45]。进一步考虑InAs/GaSb量子阱中 穿插厚AlSb层(10 nm)组成的InAs/AlSb/InGaSb量 子阱,由于势垒层AlSb层的存在,使电子一空穴 隧穿被抑制,可以增大激子绝缘体带隙^[46]。激子 绝缘体理论计算还和桑迪亚国家实验室实验组的 实验吻合得较好^[47,48]。由于存在面内磁场,激子 的基态是自旋极化的,因此该体系有可能实现激 子自旋的无耗散输运,即激子自旋超流。

3 层状二维材料中的激子绝缘相

在新兴的层状二维材料中,如石墨烯、过渡 金属二硫化物(TMDCs)和黑磷等,库仑屏蔽明显 减弱^[49],层状二维材料中激子具有巨大的束缚 能,如在单层WS2中约为0.7 eV^[50],在单层黑磷 中可达0.8 eV^[51]。因此, 层状二维材料已成为探索 激子物理的新平台。美国哈佛大学 P. Kim 教授等 人实验研究了由六方氮化硼分离的双层石墨烯中 的激子凝聚^[52]。在一个石墨烯层中驱动电流,发 现在另一层中产生了接近量子化的霍尔电压,他 们认为量子化的霍尔电压意味着相干激子输 运^[53]。几乎同时,美国哥伦比亚大学C.R.Dean教 授等人也报道了双层石墨烯结构量子霍尔效应体 系中的激子凝聚的证据^[54]。他们提出的激子超流 无耗散传输特性在对流(counter flow)结构的实验 中得到证实,并观察到与双层石墨烯的轨道和谷 指数相关的凝聚相。他们的研究结果使得激子绝 缘体的相图更为丰富。

理论计算还表明,在二维材料半氢化石墨烯 (图 5(a))中存在自旋三重态的激子凝聚和自旋无耗 散的输运^[55]。通过氢化石墨烯中比较弱的自旋— 轨道耦合来降低体系带隙和束缚能的正相关,从 而使得激子束缚能大于带隙的条件得到满足,通 过第一性原理计算发现体系具有负的激子形成能 (图 5(b),(c)),体系趋向于形成激子绝缘体基 态,并且发现系统从单体的间接带隙到多体激子 直接带隙转变。有趣的是,在体系中最低导带和 最高价带具有相反的自旋属性,这样形成的激子 天然地携带自旋,形成自旋三重态。通过多带量 子多体理论进一步证明这种宏观凝聚的激子绝缘 体带隙可达24 meV(图5(d))。宏观相干的激子绝 缘体态虽然不带电荷,但是可以携带自旋,因而 可以形成可观察的自旋超流输运现象。这对未来 可能的无耗散自旋电子学器件应用提供了可能 的物理机制。

人们对 2D-TMDCs 中的激子物理也展开了深 入研究。在 2D-TMDCs 中,激子本身束缚能大、 寿命长,激子还可以与谷、自旋、层和拓扑等 自由度相互耦合,带来了丰富的激子物理。2017 年,美国伊利诺伊大学实验组在 Science 上报道 了利用他们发展的动量分辨电子能量损失谱 (M-EELS)技术,研究了 1T-TiSe2中的电子集体模 式^[56]。在相变温度(190 K)附近,电子的能量在非 零动量下降至零,表明等离子体波动的动态减 慢,电子一空穴对形成激子凝聚物,他们的研究 为固体中的激子凝聚提供了令人信服的证据。值 得一提的是,最近美国华盛顿大学和普林斯顿大 学的实验组分别独立找到 1T'-WTe2存在激子绝缘 体相的证据^[57, 58]。文献[57]发现样品中自发形成激

图5 石墨烯吸氢二维材料中的自旋三重态激子绝缘体相^[55] (a)石墨炔的晶体结构;(b)石墨炔激子形成能色散,激 子具有负的形成能会失稳而进入激子绝缘体相;(c)激子能 谱,负能量的基态代表进入激子绝缘体相;(d)激子绝缘体 带隙和激子绝缘体临界温度

子,揭示了干净样品中电荷中性点附近存在能 隙,同时还发现了在磁场存在的情况下电荷中性 点附近的异常传输行为,他们认为这两者都是激 子绝缘体存在的迹象。文献[58]测量了电导和化学 势与掺杂浓度的关系,他们发现这与单粒子图像 不相容,却可以通过激子绝缘体理论来解释。美 国康奈尔大学实验组发现了 MoSe₂(电子层)/WSe₂ (空穴层)双层原子中的强关联激子绝缘体^[59]。当施 加在两个空间分离的 TMD 层之间的偏置电压被调 谐到特定的范围时,就会产生准平衡电子—空穴 空间分离的激子流体。利用 Gross—Pitaevskii(GP) 方程,人们理论上发现可以在新型二维材料范德 瓦耳斯异质结中实现激子涡旋的调控^[60, 61]。

4 总结与展望

自激子绝缘相理论被提出以来,已经经历了

参考文献

- [1] Mott N F. Philosophical Magazine, 1961, 6:287
- [2] Keldysh L V K, Kopaev Y V. Fizika Tverdogo Tela, 1964, 6:2791
- [3] Jérome D, Rice T M, Kohn W. Phys. Rev., 1967, 158:462
- [4] Halperin B I, Rice T M. Rev. Mod. Phys., 1968, 40:755
- [5] Kohn W, Sherrington D. Rev. Mod. Phys., 1970, 42:1
- [6] Snoke D. Science, 2002, 298: 1368
- [7] Butov L V. Solid State Communications, 2003, 127:89
- [8] Kasprzak J et al. Nature, 2006, 443: 409
- [9] Balili R, Hartwell V, Snoke D et al. Science, 2007, 316:1007
- [10] Deng H, Weihs G, Santori C et al. Science, 2002, 298:199
- [11] Zhang L et al. Proceedings of the National Academy of Science, 2015, 112:E1516
- [12] Knox R S. Theory of excitons, Vol. 5, Solid State Physics. (Academic Press, New York & London, 1963)
- [13] Cercellier H et al. Phys. Rev. Lett., 2007, 99:146403
- [14] Zittartz J. Physical Review, 1967, 164: 575
- [15] Zittartz J. Physical Review, 1967, 162:752
- [16] Zittartz J. Physical Review, 1968, 165:605
- [17] Fenton E W. Physical Review, 1968, 170:816
- [18] Ebisawa H, Fukuyama H. Progress of Theoretical Physics, 1969, 42:512
- [19] Chen P, Chan Y H, Fang X Y et al. Nat. Commun., 2015, 6: 8943
- [20] Wakisaka Y et al. Phys. Rev. Lett., 2009, 103:026402
- [21] Lu Y F, Kono H, Larkin T I et al. Nat. Commun., 2017, 8:14408
- [22] Kim S Y et al. ACS Nano., 2016, 10:8888

半个多世纪, 近期新的低维系统和量子结构的 不断涌现,引起了人们对激子绝缘体研究的广 泛关注。在激子绝缘体理论上,宾夕法尼亚大学 C.L. Kane教授提出分数激子绝缘体,即电子一空 穴的关联流体行为可以类比为零磁场下分数量子 霍尔效应,类似于电子填充1/m(这里m是无量纲 正数)时的劳夫林(Laughlin)状态^[62]。德克萨斯大学 奥斯汀分校 A. H. MacDonald 教授组提出激子绝缘 体中会呈现出条纹相^{63]}。另外,类比于金属超导 体系,人们可以期待在激子绝缘体中发现超导中 的类-迈斯纳、类-约瑟夫森效应、甚至类p波和d 波激子绝缘体^[64]。传统的激子物理与拓扑、磁性 和超导结合,焕发出新的青春。总之,激子绝缘 体的研究方兴未艾, 业已形成了一个凝聚态物理 领域内的研究热点,可以相信,未来随着新材料 和新结构的不断发现和优化,或许可以期待发现 室温下的激子绝缘相和无耗散的自旋超流。

- [23] Mor S et al. Phys. Rev. Lett., 2017, 119:086401
- [24] Bucher B, Steiner P, Wachter P. Phys. Rev. Lett., 1991, 67:2717
- [25] Du L, Li X, Lou W et al. Nat. Commun., 2017, 8:1971
- [26] Nam S B, Reynolds D C, Litton C W et al. Phys. Rev. B, 1976, 13:761
- [27] Bayer M, Timofeev V B, Faller F et al. Phys. Rev. B, 1996, 54: 8799
- [28] Zhu B, Huang K. Phys. Rev. B, 1987, 36:8102
- [29] Butov L V, Zrenner A, Abstreiter G et al. Phys. Rev. Lett., 1994, 73:304
- [30] Kroemer H. Physica E: Low-dimensional Systems and Nanostructures, 2004, 20: 196
- [31] Zhu X, Littlewood P B, Hybertsen M S et al. Phys. Rev. Lett., 1995,74:1633
- [32] Zhu X, Quinn J J, Gumbs G. Solid State Communications, 1990, 75:595
- [33] Shevchenko S I. Phys. Rev. Lett., 1994, 72:3242
- [34] Cheng J P, Kono J, McCombe B D et al. Phys. Rev. Lett., 1995, 74:450
- [35] Ando T, Fowler A B, Stern F. Rev. Mod. Phys., 1982, 54:437
- [36] Yurii E L, Berman O L. Physica Scripta, 1997, 55:491
- [37] Bastard G, Mendez E E, Chang L L et al. Phys. Rev. B, 1982, 26:1974
- [38] Altarelli M, Maan J C, Chang L L, et al. Phys. Rev. B, 1987, 35: 9867
- [39] Norton D T et al. IEEE Journal of Quantum Electronics, 2013,

49:753

- [40] Marcadet X, Prevot I, Becker C et al. Improved InAs/AlSb/GaSb Heterostructures for Quantum Cascade Laser Application (SPIE, 2001), Vol. 4287, In-Plane Semiconductor Lasers V
- [41] Razeghi M, Wei Y, Gin A et al. High Performance Type II InAs/ GaSb Superlattices for Mid, Long, Very Long Wavelength Infrared Focal Plane Arrays (SPIE, 2005), Vol. 5783, Defense, Security, p. SI
- [42] Liu C, Hughes T L, Qi X L et al. Phys. Rev. Lett., 2008, 100: 236601
- [43] Knez I, Du R R, Sullivan G. Phys. Rev. B, 2010, 81: 201301
- [44] Knez I, Du R R, Sullivan G. Phys. Rev. Lett., 2011, 107:136603
- [45] Stajic J. Science, 2017, 358:1552
- [46] Wu X, Lou W, Chang K et al. Phys. Rev. B, 2019, 99:085307
- [47] Jiang Y et al. Phys. Rev. B, 2017, 95:045116
- [48] Yu W et al. New Journal of Physics, 2018, 20:053062
- [49] Chernikov A, Berkelbach T C, Hill H M et al. Phys. Rev. Lett., 2014, 113:076802
- [50] Zhu B, Chen X, Cui X. Scientific Reports, 2015, 5:9218

- [51] Zhang G, Chaves A, Huang S et al. Science Advances, 2018, 4: eaap9977
- [52] Liu X, Watanabe K, Taniguchi T et al. Nat. Phys., 2017, 13:746
- [53] Kellogg M, Spielman I B, Eisenstein J P et al. Phys. Rev. Lett., 2002, 88:126804
- [54] Li J I A, Taniguchi T, Watanabe K et al. Nat. Phys., 2017, 13: 751
- [55] Jiang Z, Lou W, Liu Y et al. Phys. Rev. Lett., 2020, 124:166401
- [56] Kogar A et al. Science, 2017, 358:1314
- [57] Jia Y et al. Nat. Phys., 2022, 18:87
- [58] Sun B et al. Nat. Phys., 2022, 18:94
- [59] Ma L, Nguyen P X, Wang Z et al. Nature, 2021, 598:585
- [60] Chen Y, Huang Y, Lou W et al. Phys. Rev. B, 2020, 102:165413
- [61] Chen Y, Zhang D, Chang D. Chin. Phys. Lett., 2020, 37:117102
- [62] Hu Y, Venderbos J W F, Kane C L. Phys. Rev. Lett., 2018, 121: 126601
- [63] Xue F, MacDonald A H. Phys. Rev. Lett., 2018, 120:186802
- [64] 向涛.d波超导体.北京:科学出版社,2007.凝聚态物理学 丛书

